

Rapid Assessment Report For Site 29, Building NH 46

Zone C Charleston Naval Complex North Charleston, South Carolina

Southern Division Naval Facilities Engineering Command

Contract Number N62467-94-D-0888 Contract Task Order 0093

January, 2000

RAPID ASSESSMENT REPORT FOR SITE 29, BUILDING NH 46

ZONE C, CHARLESTON NAVAL COMPLEX NORTH CHARLESTON, SOUTH CAROLINA

COMPREHENSIVE LONG-TERM ENVIRONMENTAL ACTION NAVY (CLEAN) CONTRACT

Submitted to:
Southern Division
Naval Facilities Engineering Command
2155 Eagle Drive
North Charleston, South Carolina 29406

Submitted by:
Tetra Tech NUS
661 Andersen Drive
Foster Plaza 7
Pittsburgh, Pennsylvania 15220

CONTRACT NUMBER N62467-94-D-0888 CONTRACT TASK ORDER 0093

JANUARY 2000

PREPARED UNDER THE SUPERVISION OF:

PAUL CALLIGAN, P.G. (TASK ORDER MANAGER TETRA TECH NUS, INC. TALLAHASSEE, FLORIDA APPROVED FOR SUBMITTAL BY:

aM Wroblewski

DEBBIE WROBLEWSKI PROGRAM MANAGER TETRA TECH NUS, INC. PITTSBURGH, PENNSYLVANIA

CERTIFICATION PAGE

I certify that the information contained in this report and on any attachments is true, accurate, and complete to the best of my knowledge, information, and belief.

Approved By:

Gregory D. Swanson, P.E. South Carelina Registration No. 17132

SCDHEC UST Site Rehabilitation Contractor Class I & II No. 24

TABLE OF CONTENTS

SECTION	<u>N</u>		PAGE
1.0	INTR	ODUCTION	1-1
	1.1	SITE DESCRIPTION	1-1
	1.2	SITE HISTORY	1-2
	1.3	RECEPTOR SURVEY RESULTS	1-3
	1.4	REGIONAL GEOLOGY AND HYDROGEOLOGY	
2.0	ASSE	ESSMENT INFORMATION	
	2.1	SITE-SPECIFIC GEOLOGY AND HYDROGEOLOGY	2-1
		2.1.1 Site Geology	2-1
		2.1.2 Site Hydrogeology	2-1
	2.2	ASSESSMENT RESULTS	2-3
	2.3	FIELD SCREENING ASSESSMENT	2-4
		2.3.1 Soil Vapor Assessment	2-4
		2.3.2 Soil Mobile Laboratory Results	
		2.3.3 Groundwater Mobile Laboratory Results	
	2.4	CHEMICALS OF CONCERN IN SOIL AND GROUNDWATER	2-5
		2.4.1 Chemicals of Concern in Soil	
		2.4.2 Chemicals of Concern in Groundwater	2-6
	2.5	ANALYTICAL DATA	2-6
	2.6	AQUIFER CHARACTERISTICS AND EVALUATION	2-6
	2.7	FATE AND TRANSPORT MODEL DESCRIPTION	2-8
	2.8	PREDICTED MIGRATION AND ATTENUATION	
		OF CHEMICALS OF CONCERN	2-9
3.0	TIER	1 AND 2 EVALUATION	
	3.1	COMPARISON OF ANALYTICAL RESULTS WITH RBSLs	
	3.2	SITE CONCEPTUAL EXPOSURE MODEL	3-1
	3.3	EXPOSURE PATHWAY ANALYSIS	
		3.3.1 On-Site Commercial Worker	3-2
		3.3.2 On-Site Visitor	
		3.3.3 On-Site Construction Worker	3-3
		3.3.4 On-Site Resident	3-3
		3.3.5 Off-Site Resident	3-3
		3.3.6 Surface Water	3-3
	3.4	INDENTIFICATION OF DATA REQUIREMENTS	
	3.5	SITE-SPECIFIC TARGET LEVELS	3-4
	3.6	RECOMMENDATIONS	3-7
4.0	REF	ERENCES	4-1

TABLE OF CONTENTS (Continued)

TABLES

- 1 GROUNDWATER ELEVATIONS
- 2 GROUNDWATER FIELD MEASUREMENTS
- 3 GROUNDWATER NATURAL ATTENUATION FIELD MEASUREMENTS
- 4 SUMMARY OF OVA SOIL SCREENING RESULTS
- 5 SUMMARY OF MOBILE LABORATORY SCREENING RESULTS FOR SOIL
- 6 SUMMARY OF MOBILE LABORATORY SCREENING RESULTS FOR GROUNDWATER
- 7 SUMMARY OF FIXED-BASE LABORATORY ANALYTICAL RESULTS FOR CHEMICALS OF CONCERN IN SOIL
- 8 SUMMARY OF FIXED-BASE LABORATORY ANALYTICAL RESULTS FOR CHEMICALS OF CONCERN IN GROUNDWATER
- 9 FATE AND TRANSPORT INPUT PARAMETERS
- 10 COMPARISON OF MAXIMUM CONCENTRATIONS TO RBSLs
- 11 EXPOSURE PATHWAY ASSESSMENT CURRENT LAND USE
- 12 EXPOSURE PATHWAY ASSESSMENT FUTURE LAND USE

FIGURES

- 1 SITE LOCATION MAP
- 2 SITE VICINITY MAP
- 3 SITE MAP AND SAMPLING LOCATIONS
- 4 GEOLOGIC CROSS SECTION A TO A'
- 5 GEOLOGIC CROSS SECTION B TO B'
- 6 GROUNDWATER POTENTIOMETRIC MAP, SEPTEMBER 10, 1999
- 7 AREAL EXTENT OF FREE PRODUCT
- 8 BENZENE SOIL CONCENTRATION MAP
- 9 TOLUENE SOIL CONCENTRATION MAP
- 10 ETHYLBENZENE SOIL CONCENTRATION MAP
- 11 TOTAL XYLENES SOIL CONCENTRATION MAP
- 12 NAPHTHALENE SOIL CONCENTRATION MAP
- 13 PREDICTED 10-YEAR MIGRATION
- 14 PREDICTED 20-YEAR MIGRATION

APPENDICES

- A UNDERGROUND STORAGE TANK ASSESSMENT REPORT UST NH46-5
- B GEOLOGIC BORING LOGS
- C FIELD SAMPLING DATA SHEETS
- D SOIL AND GROUNDWATER LABORATORY ANALYTICAL DATA
- E BORING LOG OF MONITORING WELL USED IN AQUIFER CHARACTERIZATION EVALUATION
- F DOMENICO 10 YEAR AND 20 YEAR SIMULATION SPREADSHEETS AND RAQULT'S LAW
- G SITE-SPECIFIC RBSL CALCULATIONS
- H SOIL LEACHABILITY MODEL

EXECUTIVE SUMMARY

Tetra Tech NUS, Inc. (TtNUS) has completed a Rapid Assessment (RA) for Site 29 (Building NH 46), a closed underground storage tank (UST) system at Charleston Naval Complex (CNC) Zone C, in North Charleston, South Carolina. The UST system provided fuel oil to Building NH 46. The RA was performed under the direction of the South Carolina Department of Health and Environmental Control (SCDHEC).

TtNUS performed the following actions during the RA:

- Reviewed available Navy documents to identify potential sources and receptors for petroleum hydrocarbons in the vicinity, evaluate public and private potable wells, locate utilities, locate nearby surface water bodies, and to determine surface hydrology and drainage;
- Reviewed the previously prepared Underground Storage Tank Assessment Report for UST NH46-5 to determine boring locations and monitoring well placements;
- Conducted a site survey to identify utilities, and to construct a site plan;
- Performed a direct push investigation collecting soil samples for field screening using an
 organic vapor analyzer, and collecting soil and groundwater samples for mobile lab
 screening analysis for benzene, toluene, ethyl benzene, total xylenes (BTEX), and diesel
 range organics;
- Installed 3 temporary piezometers;
- Installed 6 shallow permanent monitoring wells to approximately 16 feet below land surface (bls) and a vertical delineation well to approximately 41 feet bls;
- Collected groundwater samples from the permanent monitoring wells for laboratory analysis for BTEX, methyl tert-butyl ether (MTBE), and naphthalene using U.S. Environmental Protection Agency (USEPA) Method 8260 and polynuclear aromatic hydrocarbons (PAHs) using USEPA Method 8270;
- Performed groundwater natural attenuation sampling;
- Collected soil samples for laboratory analysis for BTEX, ethylene dibromide (EDB) and naphthalene using USEPA Method 8260, PAHs using USEPA Method 8270, total organic carbon (TOC) using USEPA Method 415.1, total recoverable petroleum hydrocarbon (TRPH) using USEPA Method 9071, and grain size analysis using sieve and hydrometer methods; and
- Surveyed monitoring well and piezometer top of casing elevations and collected depth to groundwater measurements to evaluate the groundwater flow direction.

Conclusion

Three groundwater-elevation monitoring events were conducted at Site 29 from July 27 through September 10, 1999. Free product was detected in monitoring well CNC29-M01 at product thickness of 0.81 feet and 1.12 feet during two of the groundwater monitoring events. Free product was not detected in any of the remaining wells. Groundwater samples for laboratory analysis were collected from the site monitoring wells in July and August, 1999. Groundwater samples were analyzed for BTEX, PAHs, and EDB. All groundwater CoCs were reported at less than laboratory detection limits and below their respective (SCDHEC's) Risk Based Screening Levels (RBSLs). The absence of free product in monitoring wells located in the vicinity of CNC29-MW01, and CoC parameters being reported below detection limits, has delineated the areal extent of free product and hydrocarbon impact to groundwater at Site 29.

Six soil samples (plus one duplicate sample) were collected on June 1 1999, and analyzed for BTEX, PAHs and EDB by a fix-based laboratory. Soil CoCs detected above SCDHEC's RBSLs included benzene at 9 micrograms per kilogram (ug/kg), ethylbenzene at 3,500 ug/kg, and naphthalene at 53,000 ug/kg. The benzene and naphthalene concentrations were detected in sample 29SLB050809 (boring CNC29-B05) at the north side of the former UST pit at 8- to -9 feet bls. The duplicate soil sample collected from the same interval (sample 29SLB050809D) contained the elevated ethylbenzene concentration. The RBSLs of 5 ug/kg for benzene, 1,260 ug/kg for ethylbenzene, and 210 ug/kg naphthalene, were established for the site based on soil boring log descriptions and grain size analysis which indicate a sandy soil matrix.

Groundwater RBSLs were calculated for benzene, toluene, and naphthalene using fuel oil constituents typical of kerosene, and Raoult's Law. Using Raoult's Law, benzene, toluene, and naphthalene concentrations were calculated at 0.31 mg/L, 4.65 mg/L, and 0.010 mg/L, respectively, in equilibrium with free product. These concentrations exceeded the RBSLs for benzene, toluene, and naphthalene established at 0.005 mg/L, 1.0 mg/L, and 0.010 mg/L, respectively. However, the Domenico model predicts that benzene, toluene, and naphthalene RBSLs will not migrate to the nearest surface water body, Noisette Creek, at levels above their RBSLs within 20 years.

The on-site construction worker (utility) was identified as a potential future receptor. The RBSLs for benzene, ethylbenzene, and naphthalene were evaluated for dermal, incidental ingestion, and inhalation exposures. Based on the RBSLs, Site-Specific Target Level (SSTL) were calculated for the subsurface soil for benzene, ethylbenzene, and naphthalene leaching to groundwater. The

soil leaching SSTL calculated for benzene is 1.2635 milligrams per kilogram (mg/kg), well above the maximum benzene concentration of 0.6 mg/kg. The soil leaching SSTL for ethylbenzene and naphthalene were 108 mg/kg and 245 mg/kg, respectively, and are greater than their maximum concentrations. The maximum soil concentrations of benzene, ethylbenzene and naphthalene found during the site assessment do not exceed their calculated SSTLs. Therefore, the construction worker is not at risk if exposed to groundwater by dermal contact, incidental ingestion, or inhalation.

Recommendation

Dissolved hydrocarbons at the source well (free product) are above the RBSLs, requiring corrective action according to SCDHEC guidelines, until such time as there is no longer any free product in well CNC-29-MW01. Active Corrective Action is recommended for Site 29 to achieve the Tier 2 SSTLs. Free product should be removed to the extent practicable pursuant to R.61-92, Section 280.64

1.0 INTRODUCTION

Site 29 is a closed underground storage tank (UST) system which provided fuel oil to Building NH 46 at the Charleston Naval Complex (CNC), Zone C in Charleston, South Carolina. This Rapid Assessment (RA) was performed by Tetra Tech NUS, Inc.'s (TtNUS's) Tallahassee, Florida, office, located at 1401 Oven Park Drive, Suite 102, Tallahassee, Florida 32312 (telephone number 850-385-9899) on behalf of the U.S. Navy Southern Division (SOUTHDIV) Naval Facilities Engineering Command (NAVFAC), 2155 Eagle Drive, North Charleston, South Carolina (telephone number 843-820-7307). Authorization to conduct the RA for the site was issued by NAVFAC under Contract Task Order (CTO) 0093. The RA was performed under the direction of the South Carolina Department of Health and Environmental Control (SCDHEC). Fieldwork necessary to complete the RA was performed May 13-15, June 1-29, July 2-27, and August 3-7, 1999, by TtNUS.

1.1 SITE DESCRIPTION

The CNC is in the city of North Charleston, on the west bank of the Cooper River in Charleston County, South Carolina, as shown on Figure 1. This installation consists of two major areas: an undeveloped dredge materials area on the east bank of the Cooper River on Daniel Island in Berkley County, and a developed area on the west bank of the Cooper River. The developed portion of the base is on the peninsula bounded on the west by the Ashley River and on the east by the Cooper River. The site is located within the developed portion of the base as shown on Figure 2.

The area surrounding CNC is "mature urban," having long been developed with commercial, industrial, and residential land use. Commercial areas are primarily west of CNC; industrial areas are primarily to the north of the base along Shipyard Creek. A site vicinity map, which exhibits adjacent properties and structures, vicinity roads, current utilities, and vicinity surface drainage, is included as Figure 2.

Building NH 46 was constructed in 1941 and served as part of the Naval Hospital complex. The building's boilers and emergency generators utilized an UST system on the southwest side of the building, UST NH46-5, to provide fuel oil to the boilers and emergency generators (Figure 3). UST NH46-5 is a 1,500-gallon steel tank installed in 1941. It is unknown when the UST system was last in operation [Supervisor of Ship Building, Conversion and Repair, United States Navy, Portsmouth, Virginia, Environmental Detachment Charleston (SPORTENDETCHASN), 1998].

1.2 SITE HISTORY

In 1901, the U.S. Navy acquired 2,250 acres near Charleston to build a shipyard and the first naval officer was assigned duty in early 1902. Subsequently, buildings and a dry dock were constructed in the Naval Yard. The dry dock was completed in 1909 along with several other brick buildings and the main power plant, which is still in operation today. The first ship was placed in dry dock and work began on fleet vessels in 1910. World War I brought about an expansion of the yards, facilities, land area, and work force. The yard built two gunboats, several submarine chasers, and tugs in addition to performing repairs and other services to the fleet. In 1933, building activity had increased principally in construction of several Coast Guard tugs, a Coast Guard cutter, and a Navy gunboat, creating the need for more facilities and a much larger work force. In 1943 civilian work force peaked with almost 26,000 employees divided among three daily shifts. In 1956, construction began on piers, barracks, and buildings for mine warfare ships and personnel. Later in the decade, the facility became a major home port for combatant ships and submarines of the U.S. Atlantic Fleet [Ensafe/Allan & Hoshall, Inc. (E/A&H), 1997].

In 1993, major cuts in defense spending, as a result in part to the end of the cold war, caused CNC to be added to the list of bases scheduled for closure under the Defense Base Realignment and Closure Act (BRAC). BRAC regulates the closure and transition of property back to the community (E/A&H, 1997). With the scheduled closure of the base, operations were scaled back and environmental cleanup proceeded to make the property available for redevelopment after closure. As part of the environmental cleanup process, the UST at Building NH46 was removed and the tank closure was completed September 22, 1998.

From August 1998 through September 22, 1998, UST NH46-5 was removed, cleaned, and recycled as scrap metal. At the time UST NH46-5 was removed, no pitting or holes were found in the tank or fuel distirbution piping. Rust was observed on the outer tank wall but had not penetrated the tank's sheet metal. Rust was also observed throughout the entire fuel distribution piping run. A loose piping joint was identified approximately midway between the fill pipe inlet and UST46-5. The fuel supply and return line for UST NH46-5 consisted of 1/2-inch-diameter copper tubing which traveled below ground for a distance of approximately 26 feet into the southwest side of Building NH 46 (SPORTENDETCHASN, 1998).

During the removal of UST46-5 the tank was accidently punctured at 6 feet below land surface (bls) releasing approximately 50 gallons of fuel oil onto the soil. The soil impacted by the spill was excavated and placed in 55-gallon steel drums for disposal. No groundwater was encountered during the removal of UST46-5 system (SPORTENDETCHASN, 1998).

During the removal of UST NH46-5, grab soil samples were obtained from the UST and piping excavations. Analytical results of the samples indicate reportable concentrations of benzene, toluene, ethylbenzene, and xylene (BTEX) and polynuclear aromatic hydrocarbon (PAH) compounds.); however, the detection limits for the samples were elevated due to matrix interference (SPORTENDETCHASN, 1998). The Underground Storage Tank Assessment Report for UST NH46-5 is included in Appendix A.

1.3 RECEPTOR SURVEY RESULTS

A survey of the site vicinity was conducted by TtNUS personnel to identify potential receptors for petroleum hydrocarbon contamination. The site plan (Figure 2) depicts the public utilities located within 250 feet of the former UST NH46-5 study area. Specific information concerning the depth of utilities below land surface is currently unavailable. However, according to facility personnel, utility lines are typically located approximately 2 to 6 feet bls (SPORTENVDETCHASN, 1999). The following utility receptors were located:

- Sanitary sewer, water utility: Sanitary sewer lines are located on the east and west sides of Building NH 46. These lines extend in a north to south orientation and enter Building NH 46 on the east side. The nearest downgradient (i.e.; in relationship to groundwater flow) sanitary sewer line is located approximately 90 feet northeast of UST NH46-5. Water utility lines are located to the north, south, and east of Building NH 46. The nearest downgradient water line is located approximately 120 feet east of UST NH46-5.
- Electrical utility, gas utility: A electrical line enters Building NH 46 on the southeast side and extends
 toward the east. The electrical line is located downgradient and approximately 100 feet east of UST
 NH46-5. A gas line is located northeast of Building NH 46. This gas line extends to the north and to
 the east at a junction point approximately 20 feet north of the northeast corner of Building NH 46.
- Storm drain utility: A storm drainage system is located on the west side of Building NH 46 near UST NH46-5. The storm drains for this system are located approximately 20 feet east and 60 feet north of UST NH46-5. Storm drainage systems are also located to the north, east, and southeast of Building NH 46.

According to the Final RCRA Facility Investigation Report for Zone H (E/A&H, 1996a) a survey of groundwater users within a 7-mile radius of CNC was conducted by the South Carolina Water Resources Commission to ascertain the extent of any shallow groundwater usage. Results of the water use investigation revealed that no drinking water wells, which utilize the shallow aquifer, are located within a

4-mile radius of CNC. Irrigation wells were not identified within 1,000 feet of the site. Numerous monitoring wells are located within 1,000 feet of the site. The nearest surface water body to UST NH46-5 is Noisette Creek located approximately 1,500 feet to the north. No basements are located on the CNC property (E/A&H, 1996a).

There are no city, county, or state zoning ordinances as the property (CNC) is currently owned by the federal government. Information concerning zoning ordinances was obtained from the SOUTHDIV Remedial Project Manager located at 2155 Eagle Drive, North Charleston, South Carolina 29406 (telephone number 843-820-7307).

1.4 REGIONAL GEOLOGY AND HYDROGEOLOGY

CNC is located in Charleston County, South Carolina, in the Lower South Carolina Coastal Plain Physiographic Province on the Cooper River side of the Charleston Peninsula. The peninsula is formed by the confluence of the Cooper and Ashley Rivers. Topography in the area is typical of the South Carolina lower coastal plain and is characterized by having low-relief plains broken by the meandering streams and rivers, flowing toward the coast past occasional marine terrace escarpments (E/A&H, 1997).

The geology of the Charleston area is typical of the southern Atlantic Coastal Plain. Cretaceous-age and younger sediments thicken seaward and are underlain by older igneous and metamorphic basement rock. Surface exposures consist of recent or Pleistocene sands, silts, and clays of high organic content referred to as the Wando Formation (E/A&H, 1997). Underlying the Wando Formation, increasing with age, are the Oligocene-age Cooper Group and the Eocene-age Santee Limestone. The Cooper Group is comprised of the Parkers Ferry, Ashley, and Harleyville Formations. The formation of particular importance in the Cooper Group is the Ashley Formation, which was formerly referred to as the Cooper Marl in most regional geologic literature. In more recent geologic nomenclature, the name "Cooper" has been given to a group of formations including the Ashley Formation, a pale green to olive-brown, sandy phosphoric limestone or marl, which is locally muddy and/or sandy. The Ashley Formation in the vicinity of Charleston is encountered at a depth of approximately 30 to 70 feet bls. The top of the Ashley Formation has been reported to be associated with an erosional basin and the entire Cooper Unit, including the Ashley Formation, is indicated to be approximately 300 feet thick (E/A&H, 1997).

Groundwater occurs under water table or poorly confined conditions within the Recent or Pleistocene deposits overlying the Ashley Formation of the Cooper Group. Transmissivity in the Pleistocene aquifer is generally less than 1,000 feet per day and well yields are variable, ranging from 0 to 200 gallons per

minute (gpm). This groundwater contains high concentrations of iron and is commonly acidic at shallow depths (E/A&H, 1997).

The Cooper Group is hydrogeologically significant mainly because of its low permeability. In most locales, its sandy, finely granular limestone produces little or no water, but instead acts as confining material causing artesian conditions in the underlying Santee Limestone. Yields from wells in the Santee are usually less than 300 gpm (E/A&H, 1997).

2.0 ASSESSMENT INFORMATION

2.1 SITE-SPECIFIC GEOLOGY AND HYDROGEOLOGY

2.1.1 Site Geology

Thirteen direct push soil borings were advanced at Site 29 under the supervision of a TtNUS geologist from May 13 through May 15, 1999 (Figure 3). Twelve borings were advanced to depths ranging from 12 feet bls to 16 feet bls and one boring was completed to a depth of 28 feet bls to provides soil samples to characterize the subsurface lithology. On June 16, 1999, five shallow monitoring wells were installed to a depth of 16 feet bls. During installation grab soil samples were collected to describe the subsurface lithology. On June 21 and July 2, 1999, a vertical delineation monitoring well was installed. During the drilling process, lithologic samples were collected using split-spoon samplers to characterize the subsurface lithology to a depth of 38 feet bls.

Based on lithologic descriptions from the soil borings, the subsurface soil generally consisted of sandy silt from near surface to depths ranging from 3 to 13 feet bls. Underlying the sandy silt are silty sand and sand deposits that are present to depths ranging from 20 to 28 feet bls. Clays with interbedded sands, and silty sands were encountered from 20 feet bls to 38 feet bls (Figures 4 and 5). Boring logs are presented in Appendix B.

2.1.2 Site Hydrogeology

Six shallow water table monitoring wells, CNC29-MW01, CNC29-MW02, CNC29-MW03, CNC29-MW04, CNC29-MW05 and CNC29-MW06, and one deep vertical delineation monitoring well, CNC29-MW07, were installed as part of this RA investigation (see Figure 3). The shallow monitoring wells were completed to a depth of 16.5 feet bls. Each shallow monitoring well was completed using 10 feet of 2-inch diameter, 0.01-inch machine-slotted Schedule 40 polyvinyl chloride (PVC) screen that bracketed the water table. Monitoring well CNC33-MW07 was completed as a Type III monitoring well with 6-inch-diameter PVC surface casing grouted to a depth of 20 feet bls. After the grout for the surface casing cured for 24 hours, the borehole was advanced to a depth of 41 feet and a 2-inch-diameter PVC monitoring well was installed with a 5-foot, 0.01-inch machine-slotted PVC screen. Well construction logs for the RA monitoring wells are presented in Appendix B. At the completion of the well installations, a South Carolina registered professional surveyor surveyed each monitoring well location and the top of casing elevation.

Three temporary, small diameter, PVC piezometer, were installed to determine the depth to groundwater beneath the site (see Figure 3). The piezometers were constructed of 1-inch diameter-Schedule 40 PVC threaded casing and well screen. The screen section of the piezometer was installed to bracket the water table.

Groundwater in shallow wells at Site 29 was encountered at depths ranging from approximately 9 to 11 feet bls during the RA investigation. The recorded water-level data collected during the RA are presented in Table 1. The groundwater elevation measurements for September 10, 1999, were used to evaluate the groundwater flow direction. Figure 6 presents the groundwater potentiometric surface recorded during the field event on September 10, 1999. The potentiometric surface maps depict a groundwater flow direction toward the east.

Groundwater level data collected in monitoring well CNC29-MW01on July 27 and August 3, 1999 detected a free product thickness of 0.81 feet and 1.12 feet, respectively. Free product was not detected in monitoring wells CNC29-MW02, CNC29-MW03, and CNC 29-MW04, which are located to the south, west, and north of CNC29-MW01, respectively. The estimated areal extent of the free product is illustrated on Figure 7.

As part of the Final RCRA Facility Investigation Report for Zone B (E/A&H, 1996b), a tidal influence investigation was conducted to determine what effects tidal ranges in Noisette Creek and the Cooper River exhibit on groundwater flow within Zone B. The objective of the investigation was to measure water levels in the shallow aquifer during low, mid, and high tides in Zones A and B. Select wells in Zones C and E near the perimeter of Zone B were also measured to obtain additional data. Since Zone B is bordered by Noisette Creek to the north and is situated between Zone C and the Cooper River, results from the Zone B tidal influence investigation were used to evaluate effects of tidal influence on Site 29. Site 29 is located in Zone C of the RCRA Facility Investigation.

Measurements of tidal fluctuations identified that surface water elevations for Noisette Creek and the Cooper River varied greatly with tidal events; however, the tidal fluctuations produced less than 0.1 foot variations in all of the Zone B shallow wells. The results identified no significant change in groundwater flow direction in Zone B resulting from tidal fluctuations (E/A&H, 1996b). Since Site 29 is located farther inland from the Cooper River than the Zone B study area and farther inland to the Noisette Creek tributary, the impact of tidal fluctuation on the shallow groundwater flow direction at Site 29 is considered negligible.

2.2 ASSESSMENT RESULTS

Thirteen soil borings were completed as part of the screening portion of the soil investigation at Site 29. Six borings were completed to collect soil samples for analysis at a fixed base laboratory to confirm the Chemicals of Concern (CoC). The soil borings for screening evaluation were completed using a Direct Push Technology (DPT) rig. Samples were collected to evaluate subsurface soil vapors, soil contaminant concentration (via a mobile laboratory), and groundwater contaminant concentrations (via a mobile laboratory). The soil samples for organic vapor screening were collected from a maximum depth of 12 feet bls. The soil and groundwater samples collected for mobile laboratory screening were analyzed BTEX and diesel range organics.

Soil samples for CoC evaluation were collected on June 1, 1999, and analyzed for BTEX, ethylene dibromide (EDB) and naphthalene using U.S. Environmental Protection Agency (USEPA) Method 8260; and PAHs using USEPA Method 8270. One sample was collected for total organic carbon (TOC) analysis using USEPA Method 415.1, total recoverable petroleum hydrocarbons (TRPH) using USEPA Method 9071, and grain size analysis using sieve and hydrometer analysis. The sample collection was conducted in accordance with the SCDHEC guidance document *Standard Limited Assessment* (June 1997). Lithologic logs for each soil boring are presented in Appendix B. The soil boring locations are shown on Figure 3 and the assessment results are presented in Section 2.3.1.

Groundwater sampling was conducted on July 26, July 27, and August 7, 1999. Groundwater sampling was conducted using a peristaltic pump and low flow, quiescent techniques. The monitoring wells were sampled in accordance with SCDHEC's guidance document South Carolina Risk-Based Corrective Action for Petroleum Releases (January 1998). Each well was purged of three well volumes or until water quality parameters of pH, temperature, and conductivity stabilized. The field data sheets are included in Appendix C. A summary of the field parameter measurements is presented in Table 2. Groundwater samples were analyzed for BTEX, methyl tertiary butyl ether (MTBE), EDB, and naphthalene using USEPA Method 8260 and PAHs using USEPA Method 8270. Three of the groundwater samples were also analyzed for the following natural attenuation parameters: dissolved oxygen, alkalinity, carbon dioxide, sulfide, ferrous iron, nitrite, manganese, nitrogen/nitrate, sulfate and methane. Groundwater natural attenuation data are summarized on Table 3.

2.3 FIELD SCREENING ASSESSMENT

2.3.1 Soil Vapor Assessment

Thirteen soil borings were completed to evaluate for soil vapors as part of the soil screening assessment at Site 29. Organic vapor analyzer (OVA) headspace measurements were collected from vadose zone soils to evaluate the soil vapor concentrations. Table 4 summarizes the soil vapor screening results. Figure 3 presents the soil boring locations.

The highest soil vapor concentration was registered at 100 parts per million (ppm) in a soil sample collected from 8-9 feet bls at boring CNC29-B05. The soil vapor concentrations from the sample collected at 8 to 9 feet bls at CNC29-B05 (100 ppm) may reflect contamination associated with the groundwater or free product detected in CNC29-MW01 since low levels of soil vapors were detected in the samples from the remaining boring locations. Soil vapor concentrations in samples collected from remaining boring locations ranged from non detect (ND) to 7 ppm.

The soil vapor assessment was used as a screening method to assist in identifying locations for collection of soil samples and groundwater monitoring wells. Soil sample and monitoring well locations were determined, in part, based on these data.

2.3.2 Soil Mobile Laboratory Results

One soil sample collected from each soil boring was analyzed in a mobile laboratory for BTEX, naphthalene, and diesel range organics using USEPA Methods 8021B and 8015M. The soil samples were selected based on the soil vapor screening results with the additional criteria that the samples originate in the vadose zone above the water table. Table 5 presents a summary of the analytical data from the mobile laboratory. The boring locations are shown on Figure 3.

As indicated in Table 5, BTEX and naphthalene consituents were reported below the laboratory reporting limit in all samples except the one soil sample from CNC29-B05 where ethylbenzene [16 micrograms per killogram (ug/kg)], total xylenes (70 ug/kg), and naphthalene (5,000 ug/kg) were detected. Diesel range organics were detected in 7 of the 13 soil samples. Six samples reported diesel range organics ranging in concentrations from 14 milligrams per kilogram (mg/kg) to 21 mg/kg. The soil sample from CNC29-B05 reported a diesel range organic concentration of 3,400 mg/kg.

The mobile laboratory soil analysis was used as a screening method to assist in identifying locations for collection of soil samples for fixed base laboratory analysis and locations for groundwater monitoring wells. Soil sample and monitoring well locations were determined in part based on these data.

2.3.3 Groundwater Mobile Laboratory Results

A groundwater sample was collected from each soil boring location and was analyzed by a mobile laboratory for BTEX, naphthalene, and diesel range organics using USEPA Methods 8021B and 8015M. Table 6 presents a summary of the analytical data from the mobile laboratory. The boring locations are shown on Figure 3.

As indicated in Table 6, BTEX constituents were reported below detection limits in groundwater samples collected from 10 of the 13 boring locations. The detected benzene concentrations ranged from 53 micrograms per liter (ug/L) to 86 ug/L, and toluene was detected at 8.1 ug/L, 8.3 ug/L, and 32 ug/L. Ethylbenzene concentrations ranged from 72 ug/L to 140 ug/L, and total xylenes concentrations ranged from 140 ug/L to 351 ug/L. Naphthalene concentrations were reported below detection limits in groundwater samples collected from 10 of 13 boring locations. Naphthalene concentrations of 33 ug/L, 600 ug/L, 700 ug/L and 4,000 ug/L were detected in the field screening groundwater samples. Diesel range organics were detected in several samples at concentrations from non detect to 4 milligrams per liter (mg/L).

The mobile laboratory groundwater analysis was used as a field screening method to assist in identifying locations for permanent groundwater monitoring wells. All detections noted above occurred at boring locations CNC29-B05, CNC29-B06, and CNC29-B12.

2.4 CHEMICALS OF CONCERN IN SOIL AND GROUNDWATER

2.4.1 Chemicals of Concern in Soil

Six subsurface soil samples (plus one duplicate sample) were collected from the Site 29 area for determination of CoCs. The soil boring locations are shown on Figure 3, and Table 7 summarizes the CoCs detected in the soil samples. CoCs detected in the soil included benzene, toluene, ethylbenzene, total xylenes, and naphthalene. Benzene at 9 ug/kg and naphthalene at 50,300 ug/kg were detected in sample 29SLB050809 (boring CNC29-B05) at concentrations exceeding the Risk Based Screening Level (RBSL) of 5 ug/kg for benzene and 210 ug/kg for naphthalene in sandy soils. A duplicate sample, 29SLB050809D, also contained ethylbenzene (3,500 ug/kg) above the RBSL established at 1,260 ug/kg

for ethylbenzene. Benzene and naphthalene concentrations exceeding the RBSLs were also detected in the duplicate sample at 46 ug/kg and 22,400 ug/kg, respectively. The RBSL for sandy soil was used based on the boring log descriptions and a grain size analysis completed on sample 29SLB060809 (boring CNC29-B06) indicating a sandy soil matrix. Total organic carbon was also detected at 6,780 mg/kg in soil sample 29SLB060809. Soil analytical data sheets and grain size analysis reports are provided in Appendix D. The areal distribution of benzene, toluene, ethylbenzene, total xylenes, and naphthalenes from the June 1999 soil sampling are presented on Figures 8 through 12, respectively.

2.4.2 Chemicals of Concern in Groundwater

Table 8 presents the analytical results for CoCs detected in the groundwater samples. Groundwater analytical data sheets for the July 26, 27, and August 7, 1999, field events are presented in Appendix D. All groundwater CoC parameters were reported as less than laboratory detection limits and below their respective RBSLs.

2.5 ANALYTICAL DATA

Analytical data from the Underground Storage Tank Assessment Report (SPORTENDETCHASN 1998) are presented in Appendix A. Soil analytical data generated during this RA are summarized in Table 7. Groundwater analytical data generated during this RA are summarized in Table 8. The soil and groundwater laboratory analytical data for this RA are included in Appendix D.

2.6 AQUIFER CHARACTERISTICS AND EVALUATION

Groundwater levels were measured from the site monitoring wells on September 10, 1999. The groundwater flow direction across the site is toward the east as illustrated on Figure 6. The hydraulic gradient on September 10 in the vicinity of CNC29-MW01 was 0.0555 feet per foot (ft/ft).

As part of the Final RCRA Facility Investigation Report for Zone C, rising and falling head slug tests were conducted on nine shallow monitoring wells throughout Zone C to determine the hydraulic conductivity of the surfical aquifer (E/A&H, 1997). Slug tests were conducted by instantaneously adding (falling head) or removing (rising head) a volume (slug) of water from the well and measuring the recovering water level with a data logger. A hydraulic conductivity value was then calculated for the rising head test and for the falling head test. The average hydraulic conductivity for each well was determined by calculating the geometric mean of the rising and falling head values. Because hydraulic conductivity data are

lognormally distributed, the geometric mean was determined to be the most representative measure of central tendancy.

The well construction details and boring logs for each well tested during the RCRA investigation were reviewed to determine which wells were most representative of the conditions present at Site 29. To make this determination, the screened interval and proximity to the site were evaluated. Based on this evaluation, monitoring well NBCC047006 was selected as the most representative well. NBCC047006 is approximately 830 feet east-southeast of the site and is completed to a depth of approximately 13 feet with a 10-foot screened interval. The geometric mean of the rising and falling head conductivities for 047006 was 4.06 feet per day. The boring log showing the well completion and soil lithology for NBCC047006 is provided in Appendix E.

Potential movement of groundwater at the site may be described in terms of transportation by natural flow system in the saturated zone, assuming groundwater flow follows Darcy's Law. Using Darcy's Law the average linear velocity of groundwater may be expressed as:

$$V = \left(\frac{K}{n}\right) \times i$$

where:

V = average velocity

K = hydraulic conductivity = 4.06 ft/day

n = volumetric porosity = 0.47

Sieve test results for samples 29SLB060809 indicated that the soil was 98% sand, and therefore the charts on pages C3 through C5 were not applicable for estimating and soil porosity. The soil porosity default value of 0.47 cm³/cm³ given on page B2 in SCDHEC (1998) was used as the effective porosity value.

i = most recent hydraulic gradient measurement = 0.0555 ft/ft

therefore:

$$V = \left(\frac{4.06 \,\text{ft/day}}{0.47}\right) \times 0.0555 \,\text{ft/ft}$$

$$V = 0.479 \text{ ft/day}$$

In summary, the seepage velocity of the surficial aquifer was calculated to be approximately 175 feet per year based on a hydraulic conductivity of 4.06 feet per day, a hydraulic gradient of 0.0555 feet per foot, and a porosity of 47% for sandy soil.

2.7 FATE AND TRANSPORT MODEL DESCRIPTION

The Domenico model was the fate and transport model used to model groundwater in the risk analysis. The Domenico dilution/attenuation model is presented in the SCDHEC guidance document, South Carolina Risk-Based Corrective Action for Petroleum Releases (SCDHEC 1998). This model is very conservative in that it assumes an infinite mass, areal source condition through which groundwater flows. The model incorporates biological decay effects through a first-order decay process; however, this mechanism was ignored because SCDHEC guidance specifies that the decay rate must be assumed to be zero if site-specific decay rates have not been determined.

The impacted groundwater source area was modeled as 50 feet (15.00 m) wide and 6.56 feet (2.0 m) deep; these values are conservative defaults suggested by the American Society for Testing and Materials (ASTM) Standard Guide for Risk-Based Corrective Action Applied at Petroleum Release Sites (ASTM 1997). The maximum source concentrations are assumed to exist throughout the source area, further compounding the conservatism of the estimate. Because of the existence of free product on-site, the maximum solubility in equilibrium with fuel oil, calculated using Raoult's Law, was used for the maximum constituent concentrations (see Appendix F). Fuel oil constituents can vary greatly but were assumed for this investigation to be similar to kerosene, which is typically 44% naphthalene (Conoco, Inc. 1996. CONCAWE Diesel Fuel/ Kerosene).

Site-specific data were used for saturated hydraulic conductivity, hydraulic gradient, and fraction of organic carbon in soil (1.43E-05 m/sec, 0.0555 ft/ft, and 0.00678 g-C/g-soil, respectively). The soil bulk density (1.45 g/cm³) and porosity (0.47 cm³/cm³) were the defaults given on page B2 in SCDHEC (1998) for sandy soil. Sieve test results for samples 29SLB060809 indicated that the soil was 98% sand, and, therefore, the charts on pages C3 through C5 were not applicable for estimating density and porosity.

The following estimates of dispersivity were used in the Domenico model as given in SCDHEC (1998):

Parameter	Estimate
Longitudinal Dispersivity, α_x	x/10, where x= distance between the point of exposure and the
	source or compliance point
Transverse Dispersivity, α_y	α _x /3
Vertical Dispersivity, α _z	α _x /20

Table 9 summarizes fate and transport parameters used in modeling.

2.8 PREDICTED MIGRATION AND ATTENUATION OF CHEMICALS OF CONCERN

The most recent groundwater-gauging event shows that groundwater flow is primarily to the east-northeast. The current extent of impact is limited to well CNC29-MW01, which contained free product in the latest sampling event. Figure 7 shows the areal extent of free product. Concentrations of compounds of interest in all other monitoring wells have been non-detect.

The Domenico model was used to predict the distance at which the leading edge of the plume is attenuated to RBSLs in 10 and 20 years without using degradation due to biological decay. This was done by adjusting the time to 10 years (3.15x108 sec) and 20 years (6.31x108 sec) and solving for distance (x) by trial and error. The source was assumed to be free product, that is the source concentration was assumed to be that of groundwater in equilibrium with fuel oil (see Section 2.6) for the entire 10- and 20- year periods. The distance was changed separately for benzene, toluene, and naphthalene until the required distance that is necessary for the concentration to attenuate to the RBSLs was determined. Only the calculated concentrations of benzene, toluene, and naphthalene at the source (in equilibrium with free product) were greater than their respective RBSLs; therefore these were the only chemicals for which plume distances were calculated. The model estimates that after 10 years, the concentrations of benzene, toluene, and naphthalene will be 0.005 mg/L, 1.0 mg/L, and 0.010 mg/L (i.e., the RBSLs) at distances of 430 feet, 127.2 feet, and 166 feet, respectively (Figure 13). Furthermore, after 20 years, the concentrations of benzene, toluene, and naphthalene is 0.005 mg/L, 1.0 mg/L, and 0.010 mg/L (RBSLs) at distances of 472 feet, 127.2 feet, and 288 feet, respectively (Figure 14). The nearest water body is Noisette Creek located approximately 1,500 feet north of the site. Regardless of groundwater flow direction, concentrations greater than the RBSLs for the CoCs would not migrate to Noisette Creek within 20 years. The Domenico 10-year and 20-year simulation spreadsheets are presented in Appendix F.

3.0 TIER 1 AND 2 EVALUATION

3.1 COMPARISON OF ANALYTICAL RESULTS WITH RBSLs

Soil samples were collected on June 1, 1999. The samples were analyzed for BTEX and PAHs including naphthalene. Benzene, ethylbenzene, and naphthalene were found at maximum concentrations above RBSLs for sandy soil less than 5 feet above groundwater. The maximum benzene concentration was 46 μ g/kg; however, the detection limit in sample CNC29-B06 (<600 μ g/kg) was above the RBSL for benzene of 5 μ g/kg. Therefore, benzene was considered as a CoC with a maximum concentration of 600 μ g/kg in soil. The maximum concentrations of ethylbenzene and naphthalene were 3500 μ g/kg and 50,300 μ g/kg, respectively.

Groundwater sampling was conducted on July 26-27, 1999. Free product (fuel oil) was present in CNC29-MW01 (Table 1). Free product was not detected in any of the remaining six wells. The remaining wells were sampled and analyzed for BTEX, MTBE, and PAHs including naphthalene. No contaminants of concern were detected in any well. It is noteworthy that no detections were found in the deep well, CNC29-MW07, located slightly downgradient of well CNC29-MW01. For concentrations in the well containing free product, CNC29-MW01, the maximum solubility in equilibrium with fuel oil was calculated using Raoult's Law. Fuel oil constituents can vary greatly but were assumed for this investigation to be similar to kerosene, which is typically 44% naphthalene. Results of the Raoult's Law calculations are located in Appendix F. Calculated concentrations for benzene, toluene, and naphthalene (0.31 mg/L, 4.65 mg/L, and 23.35 mg/L, respectively) in equilibrium with free product exceeded their RBSLs (0.005 mg/L, 1.0 mg/L, and 0.010 mg/L, respectively). A comparison of maximum soil and groundwater concentrations to RBSLs is summarized in Table 10.

3.2 SITE CONCEPTUAL EXPOSURE MODEL

This section focuses on the current and future land use issues concerning the site. The site is part of the former Naval Hospital Complex. Figure 1 shows that the site is located in and surrounded by the CNC. The area surrounding CNC is "mature urban," having long been developed with commercial, industrial, and residential land use. Commercial areas are primarily west of CNC; industrial areas are primarily to the north of the base along Shipyard Creek. This facility is included in the BRAC activities; therefore, the future use of the facility is unknown.

Drinking water at the site and surrounding properties is provided by the city of Charleston water treatment plants. The closest surface water body is Noisette Creek located approximately 1,500 feet north of the site. Potable wells and irrigation wells were not identified within 1,000 feet of the site (E/A&H 1996a). Numerous monitoring wells are located within 1,000 feet of the site (E/A&H 1996a). Groundwater at the site flows to the east-northeast.

3.3 EXPOSURE PATHWAY ANALYSIS

This section presents the receptor characterizations of the potentially exposed populations in the vicinity of the site and identifies the potentially complete exposure pathways for those receptors. SCDHEC requires that only those exposure pathways with CoC concentrations exceeding Tier 1 RBSL concentrations are examined in a Tier 2 Risk-Based Corrective Action Report. Tables 11 and 12 present the exposure pathway assessments for current and future use scenarios, respectively.

3.3.1 On-Site Commercial Worker

An on-site commercial worker is defined as an employee who works in a commercial capacity at the site. Commercial use of the site in the future is likely; therefore, an on-site commercial worker was considered as a potential receptor. Incidental ingestion, inhalation, and dermal contact with impacted soil are expected to be negligible for commercial workers because they are located inside a building and surficial soil was not impacted above RBSLs. Drinking water at this site is provided by the city; therefore, ingestion of groundwater is not a complete exposure pathway. The building foundation is assumed to be sufficient to prevent volatilization from both soil and groundwater into a commercial building, and there is no history of vapors in the commercial building. It is unlikely that any additional exposure pathways will exist for future on-site workers; therefore, no complete pathways exist for either current or future commercial workers.

3.3.2 On-Site Visitor

An on-site visitor is defined as any person other than a worker who might come on site. On-site visitors would have the same exposure pathways as commercial workers, but their exposure duration would be much shorter. This receptor does not have to be quantified because a potential on-site visitor's chemical intake would not drive risk or cleanup levels at the site.

3.3.3 On-Site Construction Worker

An on-site construction worker is defined as a laborer who would be involved in intrusive activities on or around the site, particularly in the area of subsurface utilities. On-site construction workers could be exposed to constituents in soil by the following pathways: inhalation of volatiles from soil, dermal contact with soil, and incidental ingestion of soil. On-site construction workers could be exposed to constituents in groundwater by the following pathways: inhalation of volatiles from groundwater, dermal contact with groundwater, and incidental ingestion of groundwater. Utilities lie in the immediate vicinity of the impacted area and this pathway was considered for soil and groundwater exposure to a utility worker.

3.3.4 On-Site Resident

An on-site resident is defined as any person making his or her home at the site. This site is expected to remain a commercial/industrial facility; therefore, the on-site resident receptor was not considered further.

3.3.5 Off-Site Resident

An off-site resident is defined as any person making his or her home near the site. This receptor's location is either an actual current residence near the site or is a vacant lot or property on which a residence could be built. The site is located in an area that will likely remain commercial/industrial, therefore, this potential receptor was not considered further.

3.3.6 Surface Water

Noisette Creek is located approximately 1,500 feet north of the site. Fate and transport modeling as presented in Section 2.8 showed the maximum distance a CoC would migrate from the source is 472 feet which is less than the distance to Noisette Creek. Therefore, Noisette Creek is not at risk due to the release at the site. No other surface water body lies within 1,000 feet of the site; therefore, this pathway was not considered further.

3.4 IDENTIFICATION OF DATA REQUIREMENTS

No additional data are required to calculate site specific target levels (SSTLs) for the site.

3.5 SITE-SPECIFIC TARGET LEVELS

The only identified future potential receptor is the construction (utility) worker. Site soil concentrations were compared with RBSLs for ingestion or dermal contact with surficial soil as shown in the following table. (Surficial soil was not impacted at the site; however, for the construction worker pathway, exposure to subsurface soil is evaluated as surface soil because the worker is expected to have direct contact with the subsurface soil.)

Chemical	Maximum	RBSL for Ingestion or Dermal Contact with	Exceed
of Concern	Concentration	Soil - Commercial (mg/kg)	RBSL
	(mg/kg)		
Benzene	< 0.600	200	No
Ethylbenzene	3.5	200,000	No
Naphthalene	50.3	41,000	No

The maximum concentrations of CoCs detected when compared to the RBSLs, indicate the construction worker in a utility trench will not be at risk to the COC concentrations present in the site soil.

Groundwater RBSLs provided by SCDHEC are for ingestion only, therefore, RBSLs were calculated for the additional pathways of dermal contact, incidental ingestion, and inhalation of volatiles. A target cancer risk of 1 x 10⁻⁶ and a target hazard quotient of 1 were used in the calculations. Standard defaults were used when available and applicable to a construction worker. When no standard parameters were available, conservative assumptions were used. Where possible, site-specific parameters were used for site conditions. For all pathways, the exposure frequency was assumed to be 90 days/year and the exposure duration was assumed to be 1 year. These assumptions were considered conservative based on the nature of utility work.

The dermal contact RBSLs were calculated using the procedures in *Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual, Supplemental Guidance, Dermal Risk Assessment, Interim Guidance* (USEPA Peer Consultation Workshop Draft, 1998). Based on expected limited contact with groundwater, the event frequency was assumed to be 1 event/day and the event duration was assumed to be 1 hour/event. The skin surface area available for contact was 4500 cm², based on one-fourth the skin surface area given in the risk assessment guidance document for a swimming adult.

The incidental ingestion RBSLs were calculated using the equation given in Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual (Interim Final), (USEPA 1989). An incidental ingestion rate of 0.01 L/day was assumed based on a fraction (12.5%) of the incidental ingestion rate for a wading adult (0.01 L/hr), considered for an 8-hour work day. The incidental ingestion rate for wading adults is given in Supplemental Guidance to RAGS: Region 4 Bulletins, Human Health Risk Assessment (USEPA Region 4 1995).

Utility lines in the area are typically 2 to 6 feet deep. The depth to groundwater at the site ranges from 8.03 to 11.59 feet bgs, slightly below the estimated depth of the utility lines. As utility work can be expected to excavate a few feet below the line, this pathway was considered complete. It was assumed that a construction worker might be exposed to chemicals volatilizing from standing groundwater. The inhalation RBSLs were calculated using Henry's Law:

$$RBSL_{WATER} = RBSL_{AIR}/H$$

Where H = Henry's Law constant [mg/L-air/mg/L-water]

The RBSL_{AIR} for each chemical was calculated using the equation given in the *American Society for Testing and Materials ASTM Standard Guide for Risk-Based Corrective Action Applied to Petroleum Release Sites*, Designation E 1739-95e1 (1997). SCDHEC values were used for Henry's Law constants.

The minimum RBSL for the three pathways was chosen as the RBSL for the construction worker. The following table shows the calculated RBSLs for each pathway along with the selected (minimum) RBSL:

	Dermal	Incidental Ingestion	Inhalation	Selected (Minimum)	Maximum Site	Exceed
	RBSL	RBSL	RBSL	RESIDENCE	Concentration	RBSL
	mg/L	mg/L	mg/L	mg/Establishment and and and		
Benzene	0.85	68.52	0.15		0.31	Yes
Toluene	23.98	5677.78	5.19	5.19 - 12 - 12 - 12 - 13 - 13 - 13 - 13 - 13	4.65	No
Ethylbenzene	6.05	2838.89	14.70	6.05* 1.00 (0.10	No
Xylenes	102.33	56777.78	102.12	102712	0.79	No
Naphthalene	1.63	1135.56	2.63	A Carlo at Art of Land S	23.35	Yes

Appendix G provides the parameters and results of the RBSL calculations.

In addition, the SCDHEC Soil Leachability Model was used to determine soil SSTLs for benzene, ethylbenzene, and naphthalene protective of groundwater exposure for a construction worker. Site-specific data were used for total petroleum hydrocarbon (TPH), percent of soil that is sand or clay, fraction of organic carbon in soil, distance from highest soil impact to water table, and hydraulic conductivity (261 mg/kg, 98% sand, 1% clay, 6780 mg-C/kg-soil, 50 cm, 1.43E-03 cm/sec, respectively). The soil bulk density (1.45 g/cm³), annual average recharge (25 cm), wetting front suction (10 cm), porosity (0.47 cm³/cm³), and residual water content (0.04) were the defaults given on page B2 in SCDHEC (1998). Sieve test results for samples 29SLB060809 indicated that the soil was 98% sand and, therefore, the charts on pages C3 through C5 were not applicable for estimating density and porosity.

The groundwater RBSLs used in the leachability calculations were those calculated above for construction worker exposure. The soil leaching SSTL calculated for benzene was 1.2635 mg/kg, which is above the maximum benzene concentration detected (0.600 mg/kg). In addition, the SSTLs for ethylbenzene and naphthalene were 108 mg/kg and 245 mg/kg, respectively, and were also greater than their respective maximum concentrations.

Soil concentrations and calculated SSTLs were:

Chemical of Concern	Source Area	SSTL	Exceed SSTL
	Concentration [mg/kg]	(mg/kg)	
Benzene	0.6	1.2635	No
Ethylbenzene	3.5	108	No
Naphthalene	50.3	245	No

Appendix H provides the leachability model calculations generating SSTLs.

Since the maximum soil concentrations of benzene, ethylbenzene, and naphthalene (0.6 mg/kg, 3.5 mg/kg, and 50.3 mg/kg, respectively) found during the site assessment does not exceed the calculated SSTL for benzene, ethylbenzene, or naphthalene (1.2635 mg/kg, 108 mg/kg, and 245 mg/kg, respectively), the construction worker is not at risk if exposed to groundwater by dermal contact, incidental ingestion, or inhalation regardless of downgradient distance from source. The concentrations of benzene or naphthalene in the groundwater resulting from leaching from the soil to the groundwater will not exceed the RBSLs for a construction worker in a utility trench (0.15 mg/L, 6.05 mg/L, or 1.63 mg/L, respectively). This potential receptor is considered non-threatening and further analysis is unnecessary.

3.6 RECOMMENDATIONS

The extent of hydrocarbon impact to soil has been delineated. The maximum soil concentrations of all CoCs do not exceed their respective RBSLs for ingestion and dermal contact with soil nor do they exceed the calculated SSTLs protective of leaching to groundwater and affecting a construction worker exposed in a nearby utility trench.

The downgradient extent of hydrocarbon impact to groundwater has been delineated. There has historically been free product in CNC29-MW01. The calculated concentrations of benzene and naphthalene at the source well CNC29-MW01 (0.31 mg/L and 23.35 mg/L, respectively) in groundwater in equilibrium with fuel oil exceed the RBSLs for benzene and naphthalene (0.15 mg/L and 1.63 mg/L, respectively) calculated in Section 3.5 for exposure by a utility worker.

Since the dissolved hydrocarbon concentrations at the source well are above the RBSLs, corrective action is required according to SCDHEC guidelines, until such time as there is no longer any free product in well CNC29-MW01 and the benzene and naphthalene concentrations fall below the RBSLs of 0.15 mg/L and 1.63 mg/L, respectively.

Active Corrective Action is recommended for Site 29 to achieve Tier 2 SSTLs. Free product should be removed to the extent practicable pursuant to R.61-92, Section 280.64.

4.0 REFERENCES

ASTM (American Society for Testing and Materials), 1997. Standard Guide for Risk-Based Corrective Action Applied at Petroleum Release Sites, Designation: E 1789-95, West Conshoohocken, Pennsylvania.

Conoco Inc, 1996. CONCAWE Diesel Fuel/Kerosene.

E/A&H (Ensafe/Allen & Hoshall, Inc.) 1996a. Final RCRA Facility Investigation Report for Zone H, Naval Base Charleston, Charleston, South Carolina, July 5, 1996.

E/A&H (Ensafe/Allen & Hoshall, Inc.) 1996b. Final RCRA Facility Investigation Report for Zone B, Naval Base Charleston, Charleston, South Carolina, November 21, 1996.

E/A&H (Ensafe/Allen & Hoshall, Inc.) 1997, Final RCRA Facility Investigation Report for Zone C, Naval Base Charleston, Charleston, South Carolina, November 14, 1997.

SCDHEC (South Carolina Department of Health and Environmental Control), 1997. Standard Limited Assessment, June 1997.

SCDHEC, 1998. South Carolina Risk-Based Corrective Action for Petroleum Releases, January 1998.

SPORTENDETCHASN (Supervisor of Ship Building, Conversion and Repair, United States Navy, Portsmouth Virginia, Environmental Detachment Charleston), 1998. Underground Storage Tank (UST) Assessment Report, Charleston Naval Base Complex, North Charleston, South Carolina, September 22, 1998.

SPORTENDETCHASN, 1999. Personal Contact between Paul Calligan TtNUS and Copes Wannamacker SPORTENDETCHASN, June 17, 1999.

USEPA (U.S. Environmental Protection Agency), 1989. Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual (Interim Final), EPA/540/1-89/002.

USEPA REGION IV, 1995. Supplemental Guidance to RAGS: Region 4 Bulletins, Human Health Risk Assessment, Interim, November 1995, Atlanta, Georgia.

USEPA PEER CONSULTATION WORKSHOP DRAFT, 1998. Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual, Supplemental Guidance, Dermal Risk Assessment, Interim Guidance, November 1998, Washington, D.C.

TABLE 1

GROUNDWATER ELEVATIONS SITE 29, BUILDING NH 46 ZONE C, CHARLESTON NAVAL BASE COMPLEX NORTH CHARLESTON, SOUTH CAROLINA

Well No.	Total Depth of Well (ft)	Top of Casing Elevation, ft (MSL)	Date Measured	Depth to Free Product (BTOC)	Product Thickness, ft	Depth to Water, ft (BTOC)	Groundwater Elevation, ft (MSL)
CNC29-MW01	16.5	20.88	7/27/99	NR	0.81	NR	NA
			8/3/99	10.11	1.12	11.23	9.65
			9/10/99	ND	ND	11.59	9.29
CNC29-MW02	16.5	21.59	7/26/99	ND	ND	10.66	10.93
			9/10/99	ND	ND	11.09	10.50
CNC29-MW03	16.5	20.81	7/27/99	ND	ND	9.47	11.34
			9/10/99	ND	ND	9.93	10.88
CNC29-MW04	16.5	20.70	7/26/99	ND	ND	9.95	10.75
			9/10/99	ND	ND	10.45	10.25
CNC29-MW05	16.5	20.32	7/26/99	ND	ND	9.67	10.65
			9/10/99	ND	ND	10.23	10.09
CNC29-MW06	16.5	20.10	8/7/99	ND	ND	9.67	10.43
			9/10/99	ND	ND	10.20	9.90
CNC29-MW07	41.0	20.57	7/27/99	ND	ND	8.03	12.54
	ļ		9/10/99	ND	ND	8.62	11.95

tes:

L - Mean Sea Level

BTOC - Below Top of Casing

ft - feet

ND - Not Detected

NR - Not Recorded

NA - Not Available

TABLE 2

GROUNDWATER FIELD MEASUREMENTS SITE 29, BUILDING NH 46 ZONE C, CHARLESTON NAVAL COMPLEX NORTH CHARLESTON, SOUTH CAROLINA

Well I.D.	Date Sampled	Purge method	Volume (gallons)	Temp. (° C)	рН	Conductivity (mS/cm)	Turbidity (NTU)	Dissolved Oxygen (mg/l)
CNC29-MW02	07/26/99	PP	2.0	26.8	5.06	0.064	0	2.92
CNC29-MW03	07/27/99	PP	3.4	26.6	5.80	0.061	0	2.61
CNC29-MW04	07/26/99	PP	2.1	27.4	5.65	0.068	0	2.91
CNC29-MW05	07/26/99	PP	2.2	27.7	5.67	0.080	0	1.72
CNC29-MW06	08/07/99	PP	3.3	27.5	5.95	0.09	6	1.87
CNC29-MW07	07/27/99	PP	18.3	26.8	8.15	0.23	40	1.84

Notes:

(°C) - Degrees Celsius

PP - Peristaltic pump, low flow technique

uMHOS/cm - Micro HOS per centimeter

NTU - Nephelometric turbidity units

mg/l - Milligrams per liter

TABLE 3

GROUNDWATER NATURAL ATTENUATION FIELD MEASUREMENTS SITE 29, BUILDING NH 46 ZONE C, CHARLESTON NAVAL COMPLEX NORTH CHARLESTON, SOUTH CAROLINA

Well I.D.	Date Sampled	Dissolved Oxygen (mg/L)	Alkalinity (mg/L)	Carbon Dioxide (mg/L)	Sulfide	Hydrogen Sulfide (mg/L)	Ferrous Iron (mg/L)	Nitrite (mg/L)	Manganese (mg/L)	Nitrogen/ Nitrate (mg/L)*	Sulfate (mg/L)*	Methane (ug/L)*
CNC29-MW03	7/27/99	2.0	16	41	0.03	Not analyzed	0.01	0.025	Not analyzed	0.066	8.60	< 5.2
CNC30-MW01	8/22/99	0.4	45	88	0.80	5.0	0.21	0.003	0.2	< 0.05	1.20	9,200
CNC30-MW05	8/22/99	0.4	11	34	0.01	0.0	0.81	0.010	0.0	0.790	33.00	7

Notes:

mg/L - Milligrams per liter

ug/L - Micrograms per liter

E- Estimated Concentration

* Fixed base laboratory analysis

TABLE 4

SUMMARY OF OVA SOIL SCREENING RESULTS SITE 29, BUILDING NH 46 ZONE C, FORMER CHARLESTON NAVAL COMPLEX NORTH CHARLESTON, SOUTH CAROLINA

Sample Location	Sample Depth (feet)	Total Organic Vapor Headspace Concentration
CNC29-B01	1-2	2
	2-3	2
	3-4	2
	4-5	2
	8-9	2
CNC29-B02	4-5	4
	7-8	4
	8-9	4
CNC29-B03	7-8	7
CNC29-B04	2-3	4
	3-4	4
	5-6	4
	7-8	4
CNC29-B05	2-3	3.5
	3-4	3.5
	5-6	4
	8-9	100
	9-10	10
CNC29-B06	2-3	4
	3-4	4
	4-5	4
	5-6	4
	6-7	4
	7-8	4
	8-9	7
CNC29-B07	3-4	2
	6-7	2
	7-8	7
CNC29-B08	2-3	4
	3-4	4
	5-6	4
	6-7	4
	7-8	4
	8-9	4
	9-10	4
CNC29-B09	1-2	4
	2-3	4
	3-4	4
	4-5	4
	5-6	<u> </u>
	6-7	4
	7-8	4
	8-9	4
	9-10	4

TABLE 4 (Continued)

SUMMARY OF OVA SOIL SCREENING RESULTS SITE 29, BUILDING NH 46 ZONE C, FORMER CHARLESOTN NAVAL COMPLEX NORTH CHARLESTON, SOUTH CAROLINA

Sample Location	Sample Depth (feet)	Total Organic Vapor Headspace Concentration
CNC29-B10	3-4	4
	5-6	4
	6-7	4
	8-9	4
	9-10	4
	11-12	4
CNC29-B11	2-3	4
	3-4	4
	5-6	4
	6-7	4
	7-8	4
	8-9	4
CNC29-B12	9-10	4
	2-3	4
	3-4	4
	5-6	4
	6-7	4
	7-8	4
	8-9	4
	9-10	4
CNC29-B13	2-3	3
	3-4	3
	4-5	3
	5-6	3
	6-7	3
	7-8	3
	8-9	3

Note:

OVA - organic vapor analyzer equipped with a flame ionization detector

TABLE 5

SUMMARY OF MOBILE LABORATORY SCREENING RESULTS FOR SOIL SITE 29, BUILDING NH 46 **ZONE C, CHARLESTON NAVAL COMPLEX** NORTH CHARLESTON, SOUTH CAROLINA

Sample	Sample	Sample	Mobile Laboratory Screening Data (1)								
Location	Identification	Depth (feet)	Benzene (ug/kg)	Toluene (ug/kg)	Ethylbenzene (ug/kg)	Total Xylenes (ug/kg)	Naph- thalene (ug/kg)	Diesel Range Organics (mg/kg)			
CNC29-B01	29SFB01-0708	7-8	<5.0	<5.0	<5.0	<5.0	<5.0	14			
CNC29-B02	29SFB02-0708	7-8	<5.0	<5.0	<5.0	<5.0	<5.0	15			
CNC29-B03	29SFB03-0708	7-8	<5.0	<5.0	<5.0	<5.0	<5.0	26			
CNC29-B04	29SFB04-0708	7-8	<5.0	<5.0	<5.0	<5.0	<5.0	19			
CNC29-B05	29SFB05-0809	8-9	<5.0	<5.0	16	70	5000	3400			
CNC29-B06	29SFB06-0809	8-9	<5.0	<5.0	<5.0	<5.0	<5.0	21			
CNC29-B07	29SFB07-0708	7-8	<5.0	<5.0	<5.0	<5.0	<5.0	19			
CNC29-B08	29SFB08-0708	7-8	<5.0	<5.0	<5.0	<5.0	<5.0	<10			
CNC29-B09	29SFB09-0708	7-8	<5.0	<5.0	<5.0	<5.0	< 5.0	<10			
CNC29-B10	29SFB10-1112	11-12	<5.0	<5.0	<5.0	<5.0	<5.0	<10			
CNC29-B11	29SFB11-0708	7-8	<5.0	<5.0	<5.0	<5.0	<5.0	<10			
CNC29-B12	29SFB12-0708	7-8	<5.0	<5.0	<5.0	<5.0	<5.0	<10			
CNC29-B13	29SFB13-0708	7-8	<5.0	<5.0	<5.0	<5.0	<5.0	<10			
CNC29-B13	29SFB13- 0708 ⁽²⁾	7-8	NA	NA	NA	NA	NA	<10			

NOTES:

(1) Mobile laboratory screening data were analyzed using USEPA Method 8021/8015M. Compounds not detected are reported as less than the instrument detection limit.

(2) Laboratory duplicate

Not analyzed NA

ug/kg Micrograms per kilogram mg/kg Milligrams per kilogram

SUMMARY OF MOBILE LABORATORY SCREENING RESULTS FOR GROUNDWATER SITE 29, BUILDING NH 46 **ZONE C, FORMER CHARLESTON NAVAL COMPLEX** NORTH CHARLESTON, SOUTH CAROLINA

		Laboratory Screening Data ⁽¹⁾								
Sample Location	Sample Identification	Benzene (ug/L)	Toluene (ug/L)	Ethylbenzene (ug/L)	Total Xylenes (ug/L)	Naph- thalene (ug/L)	Diesel Range Organics (mg/L)			
CNC29-B01	29GFB01-12	<1.0	<1.0	<1.0	<1.0	33	<0.1			
CNC29-B02	29GFB02-12	<1.0	<1.0	<1.0	<1.0	<1.0	0.2			
CNC29-B03	29GFB03-12	<1.0	<1.0	<1.0	<1.0	<1.0	0.1			
CNC29-B04	29GFB04-12	<1.0	<1.0	<1.0	<1.0	<1.0	<0.1			
CNC29-B05	29GFB05-12	86	32	130	280	600	2.3			
CNC29-B06	29GFB06-12	61	8.1	91	140	600	0.8			
CNC29-B06	29GFDB06-12 ⁽²⁾	75	8.3	140	201	700	NA			
CNC29-B07	29GFB07-12	<1.0	<1.0	<1.0	<1.0	<1.0	0.2			
CNC29-B08	29GFB08-12	<1.0	<1.0	<1.0	<1.0	<1.0	<0.1			
CNC29-B09	29GFB09-12	<1.0	<1.0	<1.0	<1.0	<1.0	<0.1			
CNC29-B10	29GFB10-16	<1.0	<1.0	<1.0	<1.0	<1.0	0.1			
CNC29-B11	29GFB11-12	<1.0	<1.0	<1.0	<1.0	<1.0	0.1			
CNC29-B12	29GFB12-14	53	<1.0	72	351	4000	4.0			
CNC29-B13	29GFB13-12	<1.0	<1.0	<1.0	<1.0	<1.0	<0.1			

NOTES:

(1) Laboratory screening data were analyzed using USEPA Method 8020/8015M. Compounds not detected are reported as less than the instrument detection limit.

(2) Laboratory duplicate

NA Not analyzed ug/L Micrograms per liter mg/L Milligrams per liter

TABLE 7

SUMMARY OF FIXED-BASE LABORATORY ANALYTICAL RESULTS FOR CHEMICALS OF CONCERN IN SOIL SITE 29, BUILDING NH 46 ZONE C, CHARLESTON NAVAL COMPLEX NORTH CHARLESTON, SOUTH CAROLINA

Soil Boring / Sample No.	Sample Date	Benzene (ug/kg)	Toluene (ug/kg)	Ethyl- benzene (ug/kg)	Xylenes (total) (ug/kg)	Benzo(a) anthracene (ug/kg)	Benzo(b) fluoranthene (ug/kg)	Benzo(k) fluoranthene (ug/kg)	Chrysene (ug/kg)	Dibenzo(a,h) anthracene (ug/kg)	Naphthalene (ug/kg)
RBSL (1)		5	1622	1260	42471	73084	29097	231109	12998	87866	210
CNC29-B04 / 29SLB040708	1-Jun-99	< 6	< 6	< 6	< 6	< 360	< 360	< 360	< 360	< 360	< 6
CNC29-B05 / 29SLB050809	1-Jun-99	9	120	1200	3400	< 6900	< 6900	< 6900	< 6900	< 6900	50300
CNC29-B05 / 29\$LB050809D	1-Jun-99	46	260	3500	9000	< 360	< 360	< 360	< 360	< 360	22400
CNC29-B06 / 29\$LB060809	1-Jun-99	< 600	< 600	< 600	< 600	< 360	< 360	< 360	< 360	< 360	< 600
CNC29-B07 / 29SLB070708	1-Jun-99	< 6	< 6	< 6	< 6	< 360	< 360	< 360	< 360	< 360	< 6
CNC29-B11 / 29SLB110708	1-Jun-99	< 7	< 7	< 7	< 7	< 330	< 330	< 330	< 330	< 330	4 ^(J)
CNC29-B12 / 29SLB120708	1-Jun-99	< 6	< 6	< 6	< 6	< 360	< 360	< 360	< 360	< 360	< 6
CNC29-TL / 29TL00301 ⁽²⁾	1-Jun-99	< 5	< 5	< 5	< 5	NA	NA	NA	NA	NA	< 5

All concentrations are in micrograms per kilograms (ug/kg).

NA - Not Analyzed

⁽¹⁾ South Carolina Department of Health and Environmental Control Risk Based Screening Levels for sandy soils; depth to groundwater less than 5 feet.

⁽²⁾ Trip blank

⁽J) Indicates the presence of an analyte at a concentration less than the reporting limit and greater than the detection limit.

TABLE 8

SUMMARY OF FIXED-BASE LABORATORY ANALYTICAL RESULTS FOR CHEMICALS OF CONCERN IN GROUNDWATER SITE 29, BUILDING NH 46 ZONE C, CHARLESTON NAVAL COMPLEX NORTH CHARLESTON, SOUTH CAROLINA

Monitoring Well/ Sample No.	Sample Date	Benzene (ug/L)	Ethyl- benzene (ug/L)	Toluene (ug/L)	Xylenes (total) (ug/L)	MTBE (ug/L)	Naphthalene (ug/L)	Benzo(a) anthracene (ug/L)	Benzo(b) fluoranthene (ug/L)	Benzo(k) fluoranthene (ug/L)	Chrysene (ug/L)	Dibenzo(a,h) anthracene (ug/L)
RBSL ⁽¹⁾		5	700	1000	10000	40	10 ⁽²⁾	10 ⁽²⁾	10 ⁽²⁾	10 ⁽²⁾	10 ⁽²⁾	10 ⁽²⁾
CNC29-MW01	26-Jul-99	310 ⁽³⁾	100 ⁽³⁾	4650 ⁽³⁾	790 ⁽³⁾	-	23350 ⁽³⁾	-	-		-	-
CNC29-MW02 / 29GLM0201	26-Jul-99	< 5	< 5	< 5	< 5	< 5	< 5	<10	<10	<10	<10	<10
CNC29-MW03 / 29GLM0301	27-Jul-99	< 5	< 5	< 5	~ 5	< 5	< 5	<10	<10	<10	<10	<10
CNC29-MW04 / 29GLM0401	26-Jul-99	< 5	< 5	< 5	< 5	< 5	< 5	<10	<10	<10	<10	<10
CNC29-MW04 / 29GLM0401D	26-Jul-99	< 5	< 5	< 5	< 5	< 5	< 5	<10	<10	<10	<10	<10
CNC29-MW05 / 29GLM0501	26-Jul-99	< 5	< 5	< 5	< 5	< 5	< 5	<10	<10	<10	<10	<10
CNC29-MW06 / 29GLM0601	7-Aug-99	< 5	< 5	< 5	< 5	< 5	< 5	<10	<10	<10	<10	<10
CNC29-MW07 / 29GLM0701	27-Jul-99	< 5	< 5	< 5	< 5	< 5	< 5	<10	<10	<10	<10	<10
CNC29TL ⁽⁴⁾ / 29TL00901	27-Jul-99	< 5	< 5	< 5	< 5	< 5	< 5	NA	NA	NA	NA	NA

All concentrations are in ug/L.

ND - Not detected.

NA - Not analyzed

⁽¹⁾ South Carolina Department of Health and Environmental Control Risk Based Screening Levels for ground water.

⁽²⁾ The Risk based screening level for individual PAH CoC is 10 ug/L or 25 ug/L for total PAHs.

⁽³⁾ Concentrations in equilibrium with free product as calculated by Raoult's Law (See Appendix G)

⁽⁴⁾ Trip blank

⁽J) Indicates presence of analyte at a concentration less than the reporting limit and greater than the detection limit.

FATE AND TRANSPORT INPUT PARAMETERS SITE 29, BUILDING NH 46 ZONE C, CHARLESTON NAVAL COMPLEX NORTH CHARLESTON, SOUTH CAROLINA

	Domenico Dilution/Attenuation
Parameter	Model ⁽¹⁾
Hydraulic Conductivity [m/sec]	1.43E-05
Hydraulic Gradient	0.0055
Porosity ^(a)	0.47
Estimated Plume Length [ft]	NA
Soil Bulk Density ^(a) [kg/L]	1.45
Fractional Organic Carbon	6.78E-03
First Order Decay Rate ^(a) [sec ⁻¹]	0
Modeled Plume Length [ft]	NA NA
Modeled Plume Width [ft]	NA NA
Source Width ^(b) [m]	15
Source Thickness ^(b) [m]	2
Soluble Mass [kg]	Infinite ^(c)

- (1) Sauth Carolina Risk-Based Corrective Action for Petroleum Releases, South Carolina Department of Health and Environmental Control, 1998.
- (a) Stated values are default values for sandy soil.
- (b) Values determined from American Society for Testing and Materials (ASTM)
 Standard Guide for RISK Based Corrective Action Applied at Petroleum Sites, 1997
- (c) Assumption of the Domenico Model

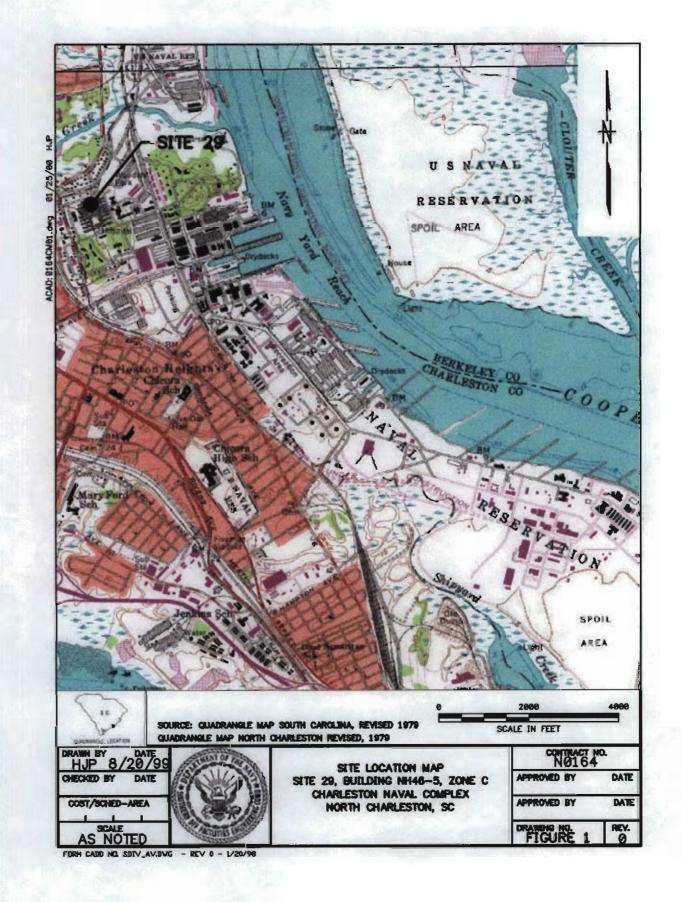
COMPARISON OF MAXIMUM CONCENTRATIONS TO RBSLs SITE 29, BUILDING NH46 ZONE C, CHARLESTON NAVAL COMPLEX NORTH CHARLESTON, SOUTH CAROLINA

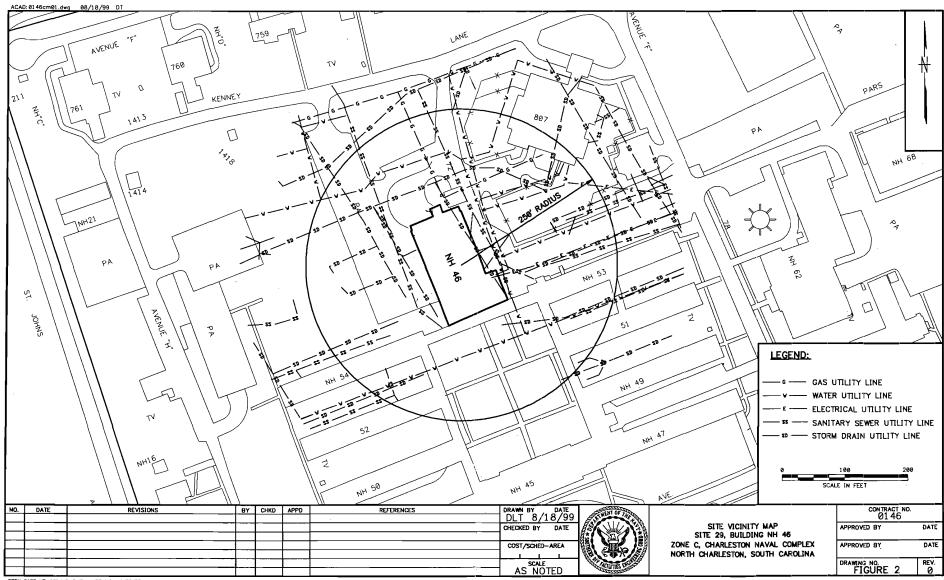
Chemical of Concern	Maximum Concentration (Soil) (mg/kg)	RBSLs Soil (mg/kg) ^(a)	Maximum Concentration GW (mg/L)	RBSLs GW (mg/L) ^(b)
Benzene	推 # \$ 0.600程本	0.005		0.005
Toluene	< 0.600	1.622		1
Ethylbenzene	12 mm 10 51 2 mm	1.26	0.1	0.7
Xylenes	9	42.471	0.79	10
MTBE	NA NA	NA	NA	0.04
Naphthalene	测导线50多速量线	0.21	新版 23 645新疆市	0.010

- (a) From Risk-Based Corrective Action for Petroleum Releases, Table 4, Depth to GW <5 ft, SCDHEC RBCA Guidelines, 1998.
- (b) From Risk-Based Corrective Action for Petroleum Releases, Table B1, SCDHEC RBCA Guidelines, 1998.

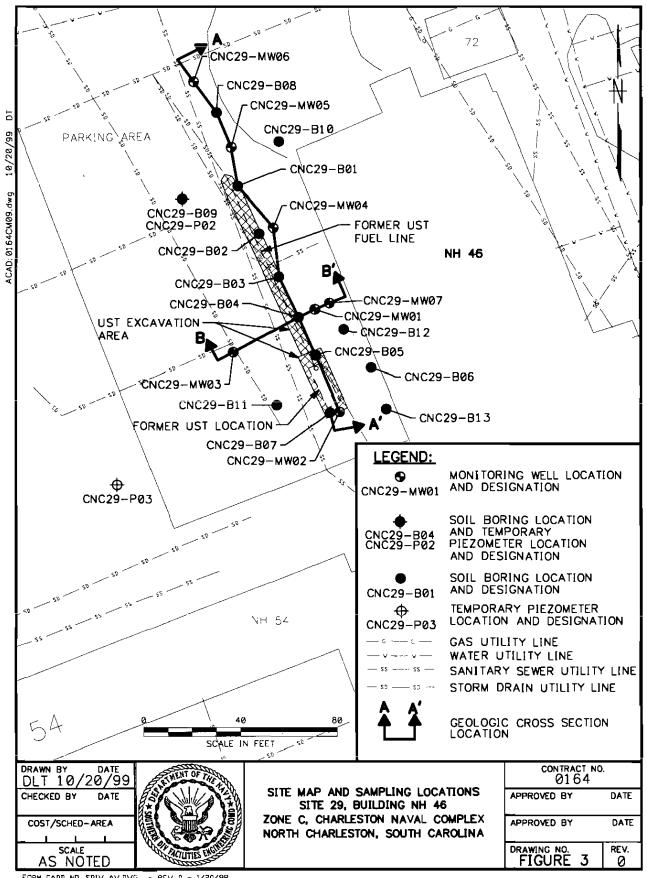
GW - Groundwater

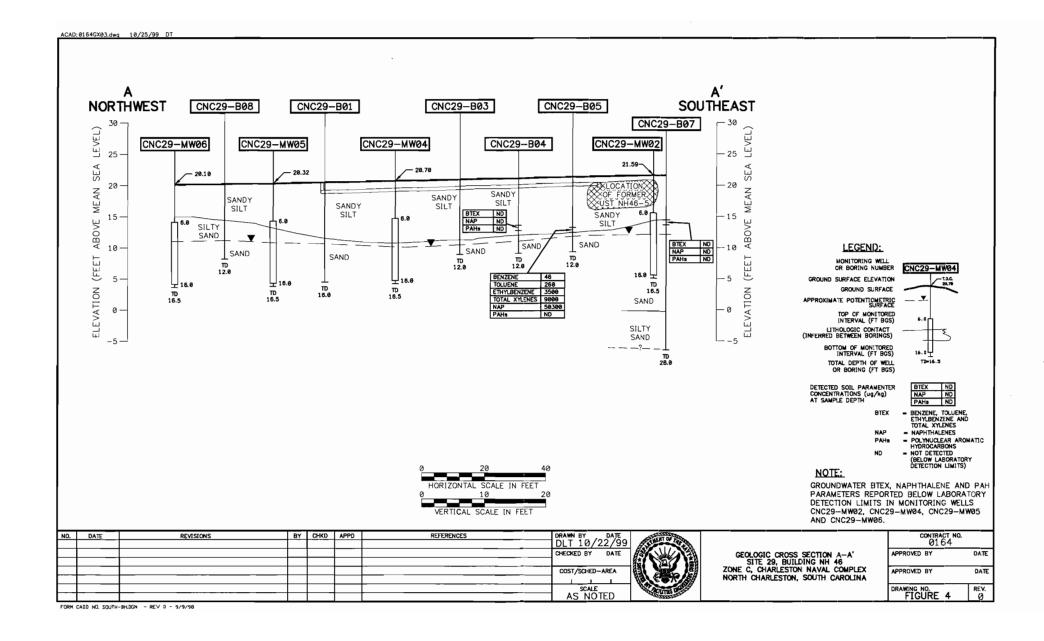
RBSLs - Risk Based Screening Levels

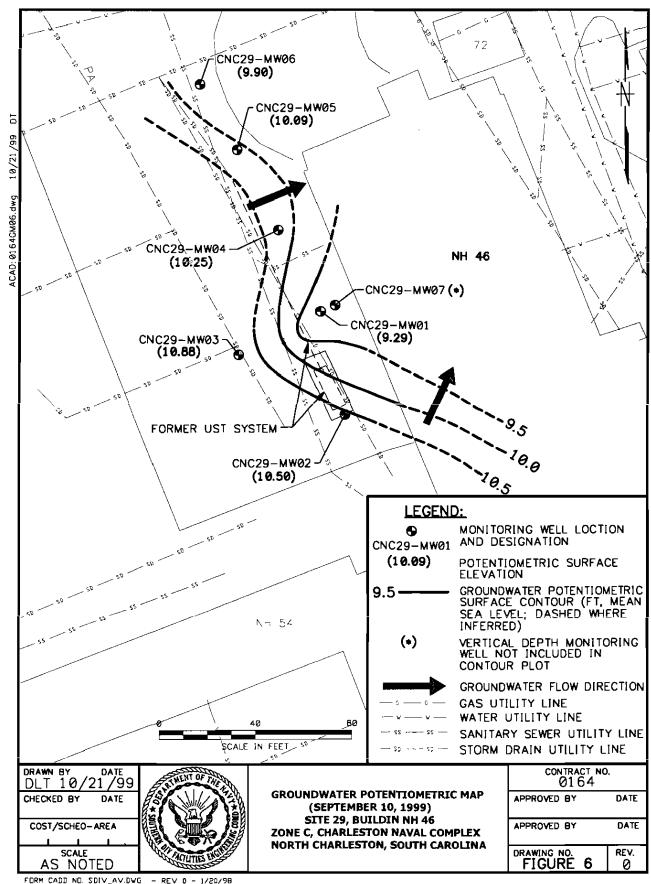

Shaded cell indicates the concentration exceeded the RBSL.

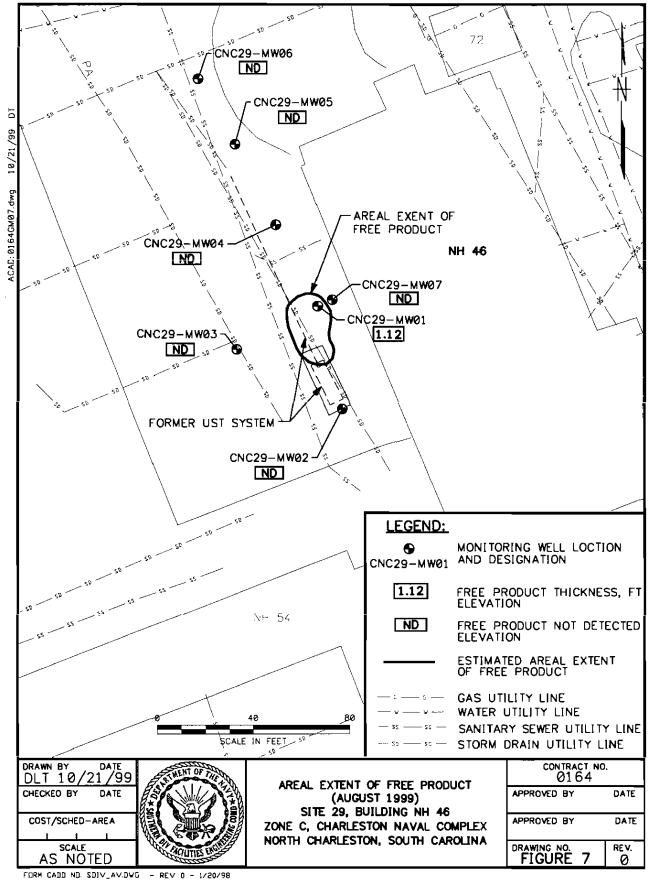

EXPOSURE PATHWAY ASSESSMENT - CURRENT LAND USE SITE 29, BUILDING NH 46 ZONE C, CHARLESTON NAVAL COMPLEX NORTH CHARLESTON, SOUTH CAROLINA

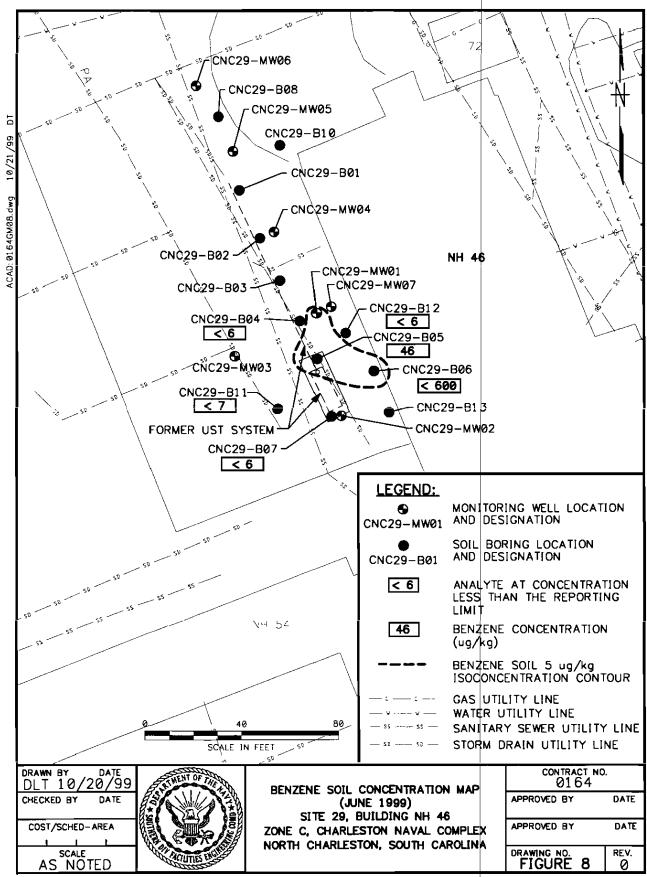
Media	Exposure Route	Pathway Selected for Evaluation? (Yes or No)	Exposure point or Reason for Non- Selection	Data Requirements (If pathway selected)
Air	Inhalation Explosion Hazard	No No	Area of Building NH 46 below grade is above water table and not expected to act as a basement. Foundation of building assumed as a vapor barrior.No explosion hazard.	
Groundwater	Ingestion Dermal contact Inhalation	No No No	No current groundwater pathways completed. Drinking water provided by city.	
Surface Water	Ingestion Dermal contact Inhalation	No No No	No surface water bodies within 1,000 feet	
Surficial Soil	Ingestion Dermal contact Inhalation	No No No	No surficial soil impact.	
Subsurface Soil	Ingestion Dermal contact Inhalation	No No No	No current complete pathways.	

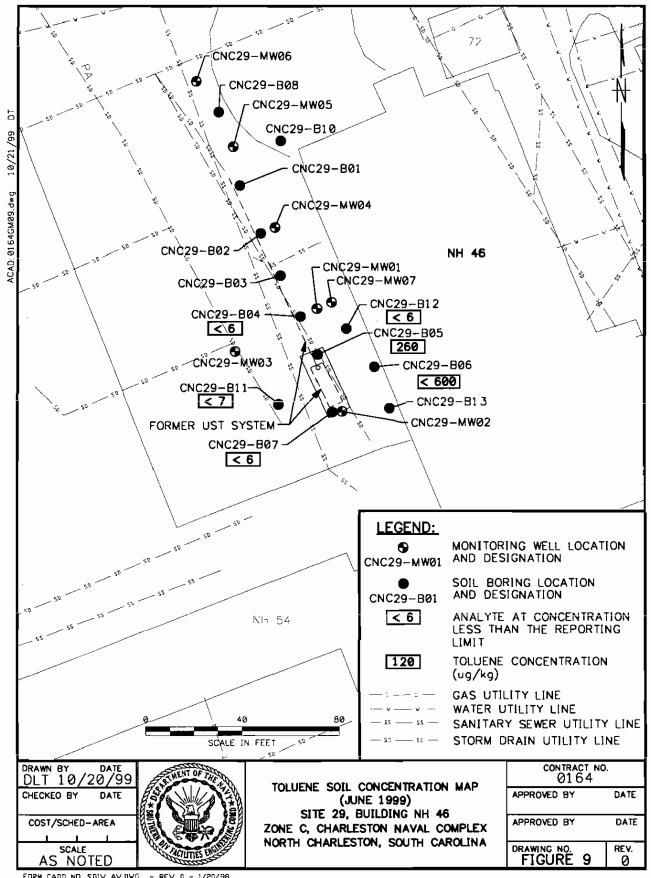

EXPOSURE PATHWAY ASSESSMENT – FUTURE LAND USE SITE 29, BUILDING NH 46 ZONE C, CHARLESTON NAVAL COMPLEX NORTH CHARLESTON, SOUTH CAROLINA

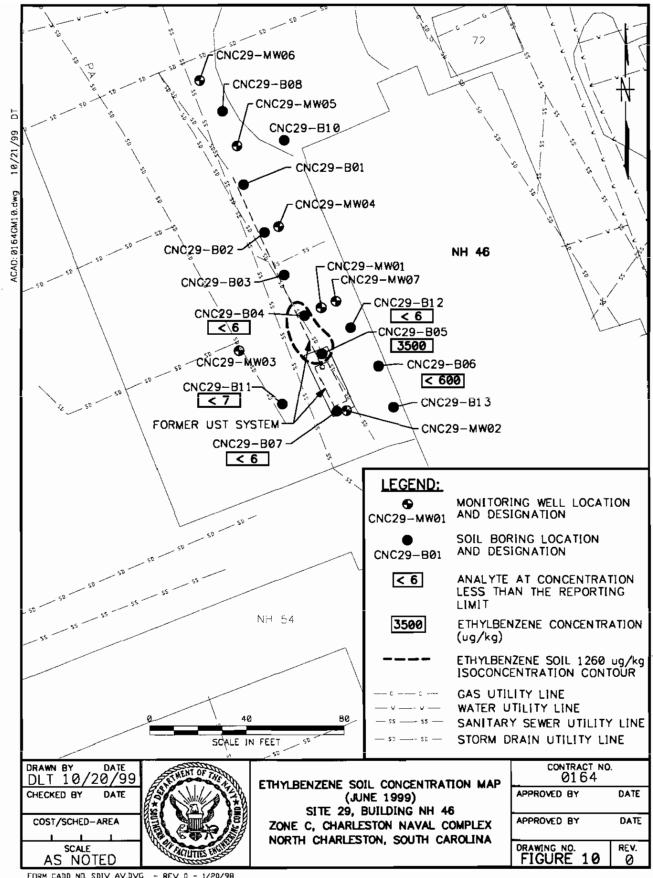

Media	Exposure Route	Pathway Selected for Evaluation? (Yes or No)	Exposure point or Reason for Non-Selection	Data Requirements (If pathway selected)
Air	Inhalation	No	Area of Building NH 46 below grade is above water table and	
	Explosion Hazard	No	not expected to act as a basement. Foundation of building assumed as a vapor barrior. No explosion hazard.	
Groundwater	Ingestion	Yes	Groundwater exposure by potential construction worker	No additional data needed.
	Dermal contact	Yes	(most likely in utility corridor). Both direct exposure and	
	Inhalation	Yes	exposure by soil leaching to groundwater evaluated. Potential for volatilization and inhalation.	
Surface Water	Ingestion	No	No surface water bodies within 1,000 feet	
	Dermal contact	No		
	Inhalation	No		
Surficial Soil	Ingestion	No	Soil exposure by potential construction worker (most likely	No additional data needed.
	Dermal contact	No	in utility corridor). Although there is no surficial soil impact,	
	Inhalation	No	subsurface soil evaluated as surface soil for construction worker as direct contact likely in utility trench.	
Subsurface Soil	Ingestion	YES	Soil exposure by potential construction worker (most likely	
	Dermal contact	YES	in utility corridor). Soil leaching to groundwater provides	
	Inhalation	YEs	exposure pathway.	

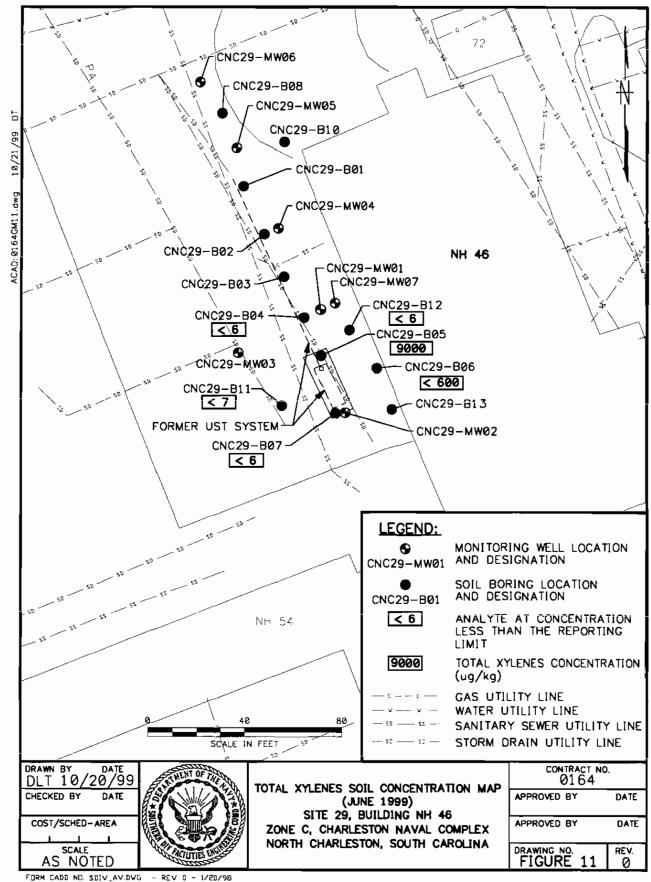


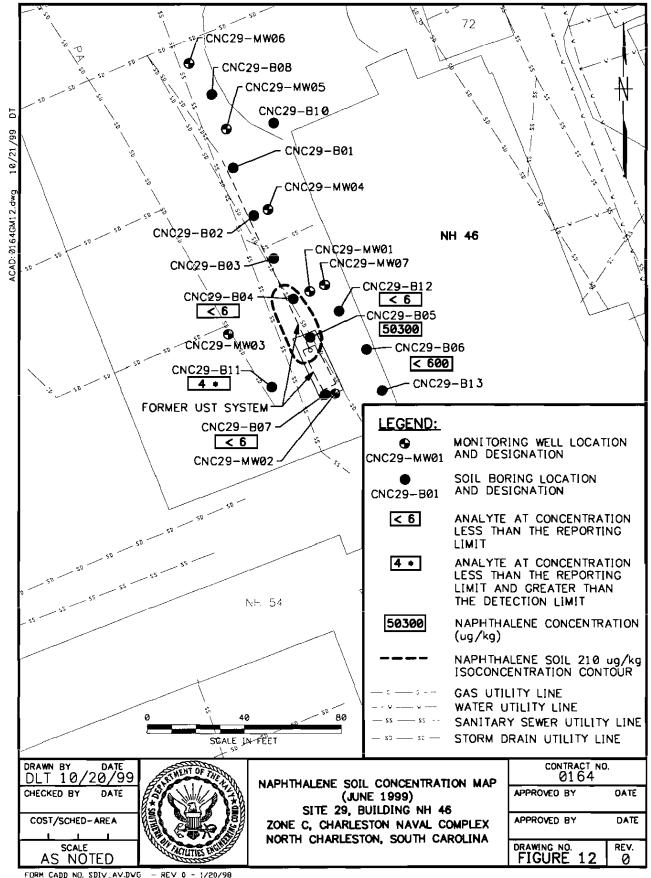

FORM CADD NOL SDIV_BH.DVG - REV 0 - 1/20/98

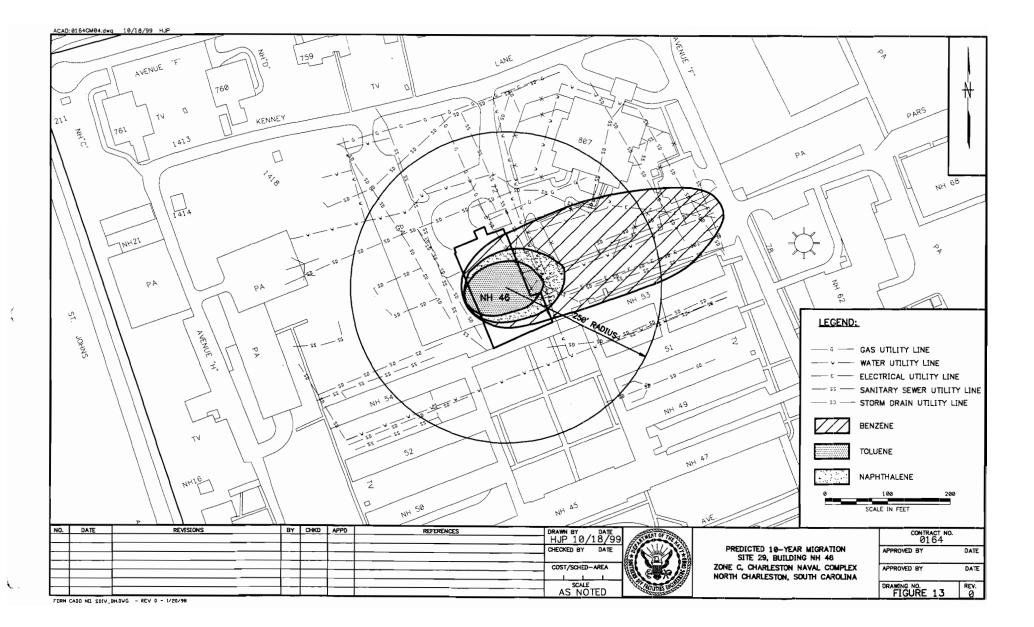


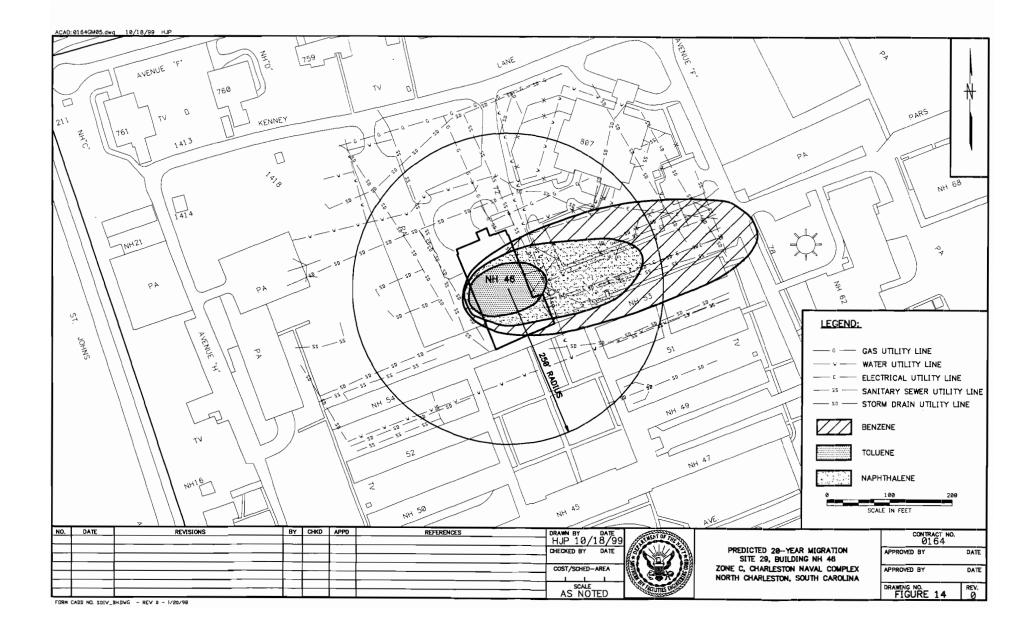












APPENDIX A

UNDERGROUND STORAGE TANK ASSESSMENT REPORT – UST NH46-5

SOUTHERN DIVISION NAVAL FACILITIES ENGINEERING COMMAND FACSIMILE

From The Desk Of

Facsimile No.: (843) 820-7465

Telephone No.: (843) 820-7307

THIS FACSIMILE CONTAINS THREE (3) PAGES
December 11, 1998

To:

PAUL CALLIGAN

TETRA TECH, NUS

Facsimile No.:

(850) 656-7403

Telephone No.:

(850) 656-5458

NOTE:

- 1. The following is the South Carolina DHEC response letter to tank NH 46-5.
- 2. If you have any questions please give me a call.

8 December 1998

2600 Bull Street Columbia, SC 29201-1708

COMMISSIONER: Douglas E. Bryant

BOARD: John H. Burriss Department of the Navy Southern Division NFEC

P.O. Box 190010

William M. Hull, Jr., MD Vice Chairman North Charleston, SC 29419-9010 Attention: Mr. Gabriel Magwood

Roger Leaks, Ir. Secretary

Mark B. Kant

Chairman

Re. Underground Storage Tank Assessment Report dated 19 October 1998

Facility NH 46 (UST NH 46-5) (Site Identification # 01206)

Cyndi C. Mosteller

Charleston Naval Complex/Charleston Naval Base

Brien K. Smith

Rodney L. Grandy

Charleston, SC Charleston County

Dear Mr. Magwood:

The author has completed technical review of the referenced document. As submitted, the report provides a narrative describing closure activities and analytical results of environmental sampling to determine if releases have occurred as a result of operation of the referenced vessel and/or associated piping system. The analytical results provided indicate reportable concentrations of BTEX and PAH compounds were detected in soil grab samples obtained from the UST and piping run excavations. Although soil sample results for PAH compounds within the UST excavation were reported as BDL (below detection limits) the detection limit for these samples were elevated due to matrix interference. As noted in previous correspondence (Bristol to Amey, 2 September 1997), when contaminant concentrations are reported as zero (0) or BDL it will be assumed that the chemical constituent is equal to the elevated detection limit. With this consideration, the reported concentrations approach or exceed levels proposed in the SCAP (Soil Corrective Action Plan amended July 1997) for the Charleston Navai Complex and appear to indicate that additional endeavors for remedial actions and contaminant characterization are warranted at the referenced site. In this regard, assessment/corrective action activities proposed in the Tank Management Plan (dated October 1996) should be implemented in an appropriate and timely manner. Employed activities should be technically sufficient and reasonable to determine the extent and severity of suspected contamination. Please be reminded that groundwater sampling, if necessary, will require construction of sampling points and will need to be submitted for prior review and approval, as appropriate.

South Carolina Department of Health and Environmental Control (S.C.D.H.E.C.) Underground Storage Tank (UST) Assessment Report

Submit Completed Form to:

Date Received

State Use Only

UST Regulatory Section SCDHEC 2600 Bull Street Columbia, South Carolina 29201 Telephone (803) 734-5331

OWNERSHIP OF UST(S)

Agency/Owner: Southern Division, Naval Facilities Engineering Command, Caretaker Site

Office

Mailing Address:

P.O. Box 190010

City: N. Charleston

State: SC

Zip Code:

29419-9010

Area Code: 843 Telephone Number: 743-9985 Contact Person: Henry N. Shepard II, P. E.

II SITE IDENTIFICATION AND LOCATION

Site 1.D. #: Unregulated

Facility Name: Charleston Naval Base Complex, NH46

Street Address: Turnbull Avenue

City: North Charleston, 29405-2413 County: Charleston

III CLOSURE INFORMATION

Closure Started: 24 Aug 1998

Number of USTs Closed:

N/A

Consultant

Closure Completed: 22 Sept 1998

SPORTENVDETCHASN

UST Removal Contractor

IV. CERTIFICATION (Read and Sign after completing entire submittal)

I certify that I have po	sonally examined and am familiar with the information submitted in this and all attached documents: and that based on my inquiry of those individuals responsible f
obcurring this inform	ion, I believe that the submaned information is true, accurate and complete.
Henry Sher	ard II P. F.

Henry Snepard II, P. E

Signature

Charleston Naval Complex/Charleston Naval Base 8 December 1998 page 2

Should you have any questions please contact me at (803) 898-3559.

Paul L. Bristol, Hydrogeologist Groundwater Quality Section Bureau of Water

cc: Trident District EQC

V.	UST INFORMATION	Tank I	Tenk 2	Tank 3	Tank 4	ĺ
Pro	duct	Fuel oil				
	pacity	1,500 gal				
		1941				
		Steel				
	struction Material	Unk.				
	nth/Year of Last Use	6'				
Dep	oth (ft.) To Base of Tank	N				_
Spil	l Prevention Equipment Y/N				· 	
Ove	rfill Prevention Equipment Y/N	N				
Met	hod of Closure Removed/Filled	R				
Visi	ble Corrosion or Pitting Y/N	Y				
Visi	ble Holes Y/N	N				

L. Method of disposal for any USTs removed from the ground (attach disposal manifests)

UST NH46-5 was removed, drained, cut open at both ends, and cleaned with a steam cleaner. It was then cut up for recycling as scrap metal. (See Attachment III.)

M. Method of disposal for any liquid petroleum, sludges, or waste waters removed from the USTs (attach disposal manifests)

The sludge, waste water, and residual fuel oil from UST NH46-5 were recycled.

N. If any corrosion, pitting, or holes were observed, describe the location and extent for each UST

UST NH46-5 was sound, although covered with rust which had not penetrated the sheet metal. However, the backhoe accidentally punctured the tank at 6 feet below ground surface level during the digging process. See Site Map 3.

VI. PIPING INFORMATION

		II	+		
A.	Construction Material	Steel & copper	_		
B.	Distance from UST to Dispenser	26' See note 1	<u> </u>		
C.	Number of Dispensers	See note 1			
D.	Type of System P/S	S		,	
E.	Was Piping Removed from the Ground? Y/N	Y	ļ		
F.	Visible Coπosion or Pitting Y/N	Y			
G.	Visible Holes Y/N	и			
H.	Age	1941			
		l '	•	•	

Yank 1 Tank 2 Tank 3 Text 4 Tank 5

Note 1: UST NH46-5 provided heating fuel oil to Building NH46.

I. If any corrosion, pitting, or holes were observed, describe the location and extent for each line.

The piping was covered with surface rust throughout the run. One loose joint was found. See Site Map 2.

VII. BRIEF SITE DESCRIPTION AND HISTORY

Facility NH46 was constructed in 1941 and served as part of the Naval Hospital complex. UST NH46-5 provided fuel oil to the boilers and emergency generators of building NH46. The tank was abandoned at an unknown date.

UST NH46-5 was first identified as a possible location for an underground tank. The only evidence that was found for the tank was an open top pipe next to a stairway in an empty parking lot over 100 feet from the tank's actual location. The tank location was approximated through the use of a magnetometer and the Building NH 46 boiler room piping and vent. The asphalt, rock and soil covering the tank had to be removed to find it. The tank was full and could not be emptied until it was uncovered, due to the remote fill line. Unfortunately, during the excavation/search for the tank, the backhoe punctured the tank resulting in a spill of approximately 50 gallons of heating fuel oil that was in the tank (see Attachment I Photo 2).

The fluid, and the soil saturated by the spill was over excavated, and sampled for disposal. Additionally, a sample was taken from the soils below the area that was over excavated during the clean-up. Efforts to remove all soil affected by the spill were taken, but the sample of the area below the over excavation showed no significant difference in contamination levels from the saturated soil which was removed. Both areas had relatively high levels of volatiles (BETX/Naphthalene) and detection levels for semi-volatiles (PAHs) which were too high to for significant analysis.

VIII. SITE CONDITIONS

Yes No Unk

A.	Were any petroleum-stained or contaminated soils found in the UST excavation, soil borings, trenches, or monitoring wells?		
	If yes, indicate depth and location on the site map.		X,
	See note 1.		
В.	Were any petroleum odors detected in the excavation, soil borings, trenches, or monitoring wells?	x	
	If yes, indicate location on site map and describe the odor (strong, mild, etc.) [beneath pipe run - mild]		
С.	Was water present in the UST excavation, soil borings, or trenches?		
	If yes, how far below land surface (indicate location and depth)?	ļ	x
).	Did contaminated soils remain stockpiled on site after closure?		
	If yes, indicate the stockpile location on the site map.		
	Name of DHEC representative authorizing soil removal: See note 2.		X
Ξ.	Was a petroleum sheen or free product detected on any excavation or boring waters?		N/A
	If yes, indicate location and thickness. See note 3.	•	•

Notes:

- 1. The release within the UST excavation was an accident caused by DET personnel. It was not a condition of the subject tank/piping that was discovered.
- 2. Petroleum impacted soil has been drummed and segregated for disposal by a recycling facility.
- 3. No groundwater was encountered.

IX. SAMPLE INFORMATION

A. SCDHEC Lab Certification Number 10120

В.

Sample #		Sample Type (Soil/Water)	Soil Type (Sand/Clay)		Date/Time of Collection	Ву	OVA#
SPORT 0784-1	Beneath fill pipe	Soil	Sand	3'	25 Aug 98 0800	M. Baker	Not Taken
SPORT 0784-2	Trip Blank.	-	-	-	-	•	-
SPORT 0784-3	Beneath fill pipe	Soil	Sand	3.5'	25 Aug 98 0900	M. Baker	Not Taken
SPORT 0784-4	Beneath fill pipe	Soil	Sand	3.5'	25 Aug 98 0900	M Baker	Not Taken
SPORT 0788-1	Dirt pile	Soil	Sand	•	1 Sept 98 0841	M. Baker	Not Taken
SPORT 0788-2	Trip Blank.	-	•	,	-	•	•
SPORT 0788-3	UST excavation, south end	Soil	Sand	8'	1 Sept 98 0930	M. Baker	Not Taken
SPORT 0788-4	UST excavation, North end	Soil	Sand	8'	1 Sept 98 0920	M. Baker	Not Taken
SPORT 0788-5	Vent pipe	Soil	Sand	4'	1 Sept 98 0937	M. Baker	Not . Taken
SPORT 0788-6	Beneath fill pipe	Soil	Sand	3.5'	1 Sept 98 0950	M. Baker	Not Taken
			-	-			
			<u> </u>	<u> </u>	11	U	B

^{* =} Depth Below the Surrounding Land Surface

X. SAMPLING METHODOLOGY

Provide a detailed description of the methods used to collect and store (preserve) the samples.

After the removal of UST NH46-5 soil samples were taken. Sampling was performed in accordance with SC DHEC R.61-92 Part 280 and SC DHEC UST Assessment Guidelines.

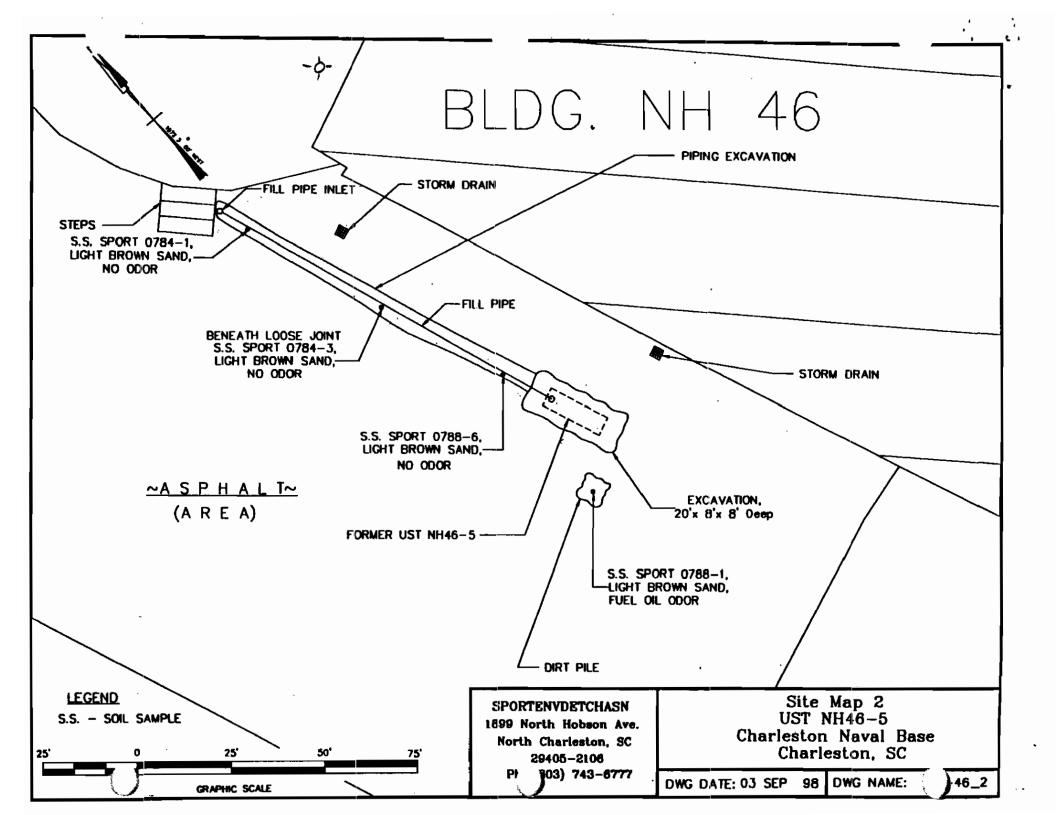
Sample jars were prepared by the testing laboratory. The grab method was utilized to fill the sample containers leaving as little head space as possible and immediately capped. Soil samples were extracted at the tank ends. UST piping soil samples were taken under the piping at the mechanical connections. Samples for volatiles were taken using the Encore sampler and T-handle.

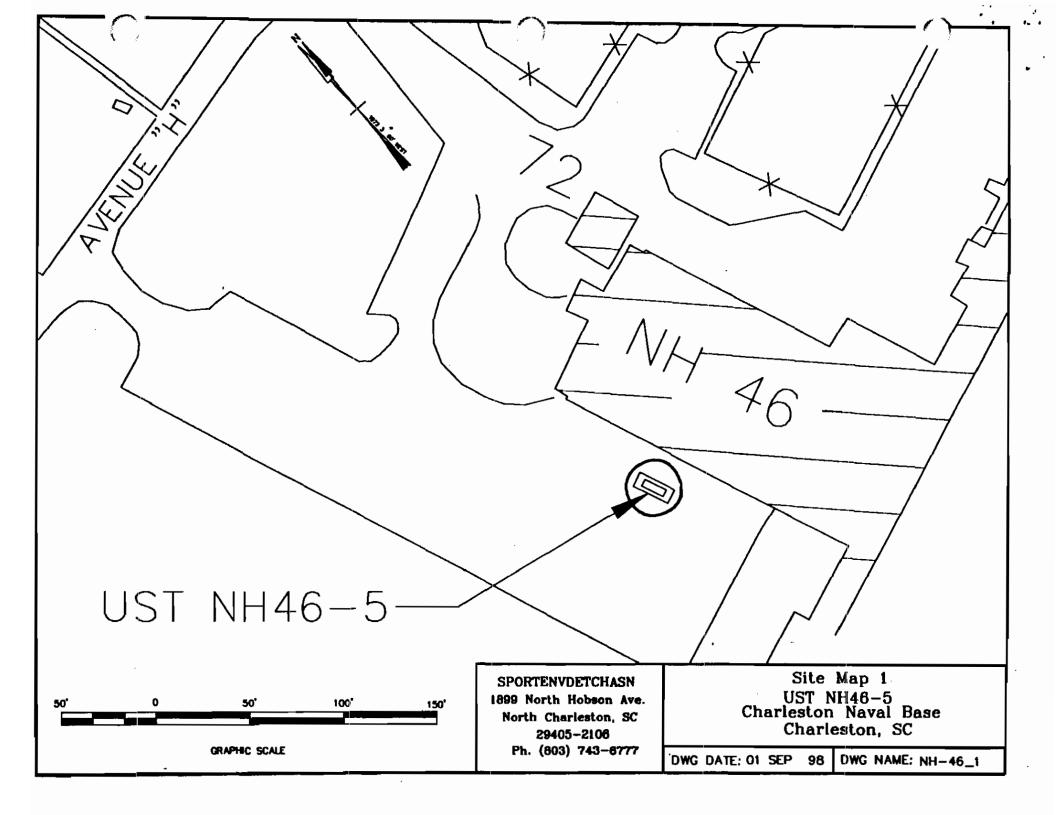
The samples were marked, logged, and immediately placed in sample coolers packed with ice to maintain an approximate temperature of 4° C. Tools were thoroughly cleaned and decontaminated with organic-free soap and water after each sample.

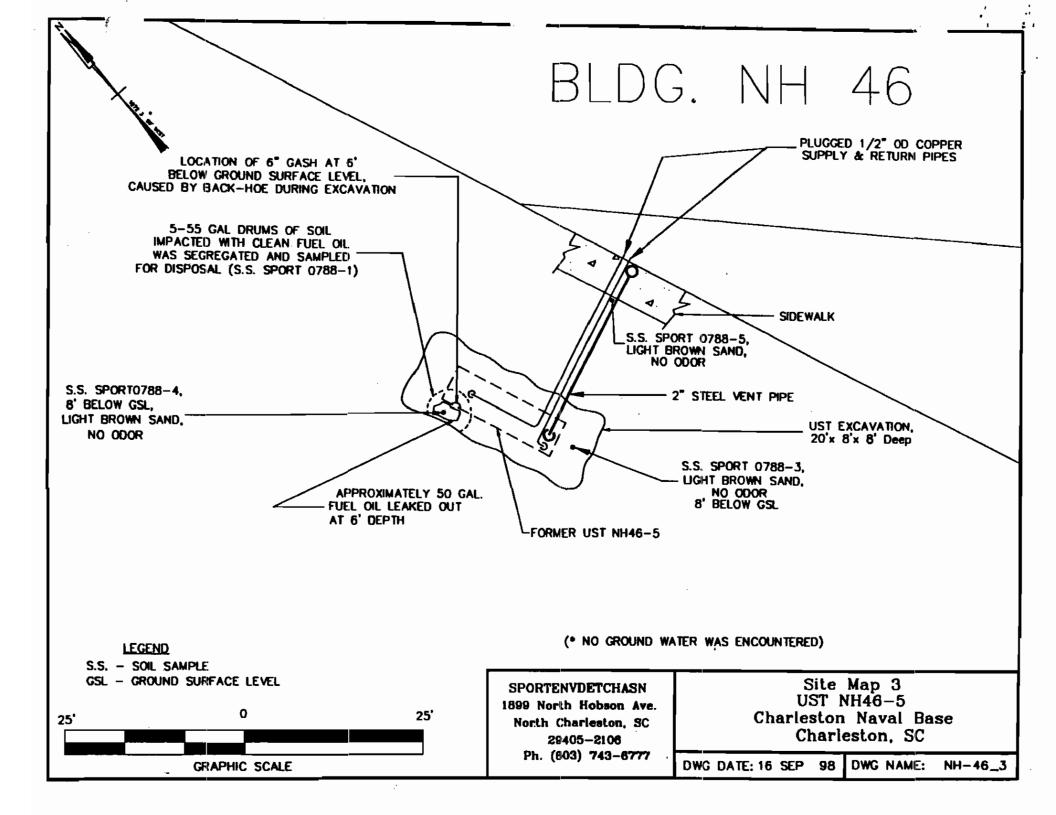
The samples remained in the custody of SPORTENVDETCHASN until they were transferred to General Engineering Laboratories for analysis as documented in the attached Chain-of-Custody Record.

XI. RECEPTORS

Yes No


A.	Are there any lakes, ponds, streams, or wetlands located within 1000 feet of the UST system?		х					
II ——	If yes, indicate type of receptor, distance, and direction on site map.							
В.	Are there any public, private, or irrigation water supply wells within 1000 feet of the UST system?							
l	If yes, indicate type of well, distance, and direction on site map.							
C.	Are there any underground structures (e.g., basements) located within 100 feet of the UST system?	· х						
ľ	If yes, indicate the type of structure, distance, and direction on site map.							
<u> </u>								
D.	Are there any underground utilities (e.g., telephone, electricity, gas, water, sewer, storm drain) located within 100 feet of the UST system that could potentially come in contact with the contamination?	x						
	If yes, indicate the type of utility, distance, and direction on the site map.							
	[storm drain]							
E.	Has contaminated soil been identified at a depth of less than 3 feet below land surface in an area that is not capped by asphalt or concrete?							
	If yes, indicate the area of contaminated soil on the site map.		x _					


Attachment I


SITE MAP

You must supply a <u>scaled</u> site map. It should include all buildings, road names, utilities, tank and pump island locations, sample locations, extent of excavation, and any other pertinent information.

Site Maps 1, 2, and 3 Photographs 1 thru 4



Photo 1: Building NH46 parking lot. The UST was located near the stairs.

Photo 3: UST NH46-5 exposed.

Photo 4: UST NH46-5 during removal.

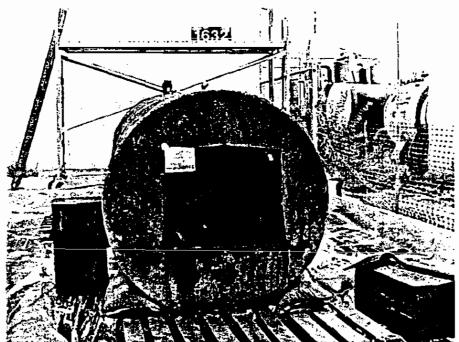


Photo 5: UST NH46-5 during cutting and cleaning.

Attachment II

ANALYTICAL RESULTS

You must submit the laboratory report and chain-of-custody form for the samples. These samples must be analyzed by a South Carolina certified laboratory.

Certified Analytical Results Chain-of-Custody

Meeting today's needs with a vision for tomorrow.

Laboratory Certifications

STATE	GEL	ÉPI
FL	E87156/87294	E87472/87
NC	233	
SC	10120	10582
TN	02934	02934

Client:

Supervisor of Ship Building & Conversion

SUPSHIP-Portsmouth Detachment-Env.

1899 North Hobson Ave.

North Charleston, South Carolina 29405-2106

Contact:

Mr. Bill Hiers

Project Description:

SUPSHIP-Portsmouth Detachment

cc: NPWC00197

Report Date: September 02, 1998

Page 1 of 3

Sample 1D

: SPORT0784-1

Lab ID Matrix : 9808866-01

Date Collected

: Soil

Date Received

: 08/25/98

Priority

: 08/25/98 ; Routine

Collector

: Client

Parameter	Qualifier	Result	DL	RL	Units	DF	A nalyst	Date	Time	Batch M
Volatile Organics										
BTEX + NAPTH 5 ite	ms									
Benzene	U	ND	0.560	1.12	ug/kg	1.0	JEB (8/30/98	1552	129984
Ethylbenzene	U	ND	0.336	1.12	ug/kg	1.0				
Naphthalene	U	ND	0.672	1.12	ug/kg	1.0				
Toluene	U	ND	1.01	1.12	ug/kg	1.0				
Xylenes (TOTAL)	U	ND	0.784	2.24	ug/kg	1.0				
Extractable Organics										
Polynuclear Aromatic H	lydrocarbons -	· 16 items								
Acenaphthene	U	ND	158	330	ug/kg	1.0	RLC (8/28/98	1800	129634 2
Acenaphthylene	U	ND	145	330	ug/kg	1.0				
Anthracene	U	ND	85.8	330	ug/kg	1.0				
Benzo(a)anthracene	U	ND	66.0	330	ug/kg	1.0				
Benzo(a)pyrene	U	ND	72.6	330	ug/kg	1.0				
Benzo(b)fluoranthene	ប	ND	142	330	ug/kg	1.0				
Benzo(ghi)perylene	U	ND.	79.2	330	ug/kg	1.0				
Benzo(k)fluoranthene	U	ND	132	330	ug/kg	1.0				
Chrysene	U	ND	52.8	330	ug/kg	1.0				
Dibenzo(a.h)anthracene	U	ND	82.5	330	ug/kg	1.0				
Fluoranthene	U	ND	66.0	330	ug/kg	1.0				
Fluorene	ប	ND	112	330	ug/kg	1.0	-			
Indeno(1,2,3-c,d)pyrene	ะ บ	ND	79.2	330	ug/kg	1.0				
Naphthalene	ប	ND	155	330	ug/kg	1.0				
Phenanthrene	υ	ND	59.4	330	ug/kg	1.0				
Pyrene	U	ND	72.6	330	ug/kg	1.0				

The following prep procedures were performed:

GC/MS Volatiles (8260 High Level)

JEB 08/30/98 0900 129984 3

9808866-01

Meeting today's needs with a vision for tomorrow.

Laboratory Certifications

 STATE
 GEL
 EPI

 FL
 E87156/87294
 E87472/87

 NC
 233
 SC
 10120
 10582

 TN
 02934
 02934
 02934

Client:

Supervisor of Ship Building & Conversion

SUPSHIP-Portsmouth Detachment-Env.

1899 North Hobson Ave.

North Charleston, South Carolina 29405-2106

Contact:

Mr. Bill Hiers

Project Description:

SUPSHIP-Portsmouth Detachment

cc: NPWC00197

Report Date: September 02, 1998

Page 2 of 3

Sample ID

: SPORT0784-1

	Sample IL		; 3POK10/64-1				
Parameter	Qualifier	Result	DL	RL	Units	DF Analyst Date	Time Batch M
GC/MS Base/Neu	ural Compounds				•	RDH 08/26/98	2015 129634 4

Comments:

Data reported in mass/mass units is reported 'as received'.

Surrogate Recovery	Test	Percent%	Acceptable Limits	
2-Fluorobiphenyl	M610	80.5	(30.0 - 115.)	
Nitrobenzene-d5	M610	95.0	(23.0 - 120.)	
p-Terphenyl-d14	M610	83.5	(37.3 - 128.)	
Bromofluorobenzene	BTEX+NAP-8260B	74.5	(53.5 - 154.)	
Dibromotluoromethane	BTEX+NAP-8260B	89.6	(63.4 - 136.)	
Toluene-d8	BTEX+NAP-8260B	109.	(72.1 - 137.)	

M = Method	Method-Description	
M I	SW846 8260B	
M 2	EPA 8270	
M 3	EPA 5035	
M 4	EPA 3550	

Notes:

The qualifiers in this report are defined as follows:

ND indicates that the analyte was not detected at a concentration greater than the detection limit.

J indicates presence of analyte at a concentration less than the reporting limit (RL) and greater than the detection limit (DL).

U indicates that the analyte was not detected at a concentration greater than the detection limit.

* indicates that a quality control analyte recovery is outside of specified acceptance criteria.

Meeting today's needs with a vision for tomorrow.

Laboratory Certifications STATE FL NC SC TN GEL E87156/87294 E87472/R 233 10120 10582

02934

Client:

Supervisor of Ship Building & Conversion

SUPSHIP-Portsmouth Detachment-Env.

1899 North Hobson Ave.

North Charleston, South Carolina 29405-2106

Contact:

Mr. Bill Hiers

Project Description:

SUPSHIP-Portsmouth Detachment

cc: NPWC00197

Report Date: September 02, 1998

Page 3 of 3

02934

Sample ID

: SPORT0784-1

M = Method

Method-Description

This data report has been prepared and reviewed in accordance with General Engineering Laboratories standard operating procedures. Please direct any questions to your Project Manager, Karen Blakeney at (803) 769-7386.

Meeting today's needs with a vision for tomorrow.

Laboratory Certificatio

STATE GEL EPI FL NC SC TN E87472/874" E87156/87294 233

10120 10582 02934 02934

Client:

Supervisor of Ship Building & Conversion SUPSHIP-Portsmouth Detachment-Env.

1899 North Hobson Ave.

North Charleston, South Carolina 29405-2106

Contact:

Mr. Bill Hiers

Project Description:

SUPSHIP-Portsmouth Detachment

cc: NPWC00197

Report Date: September 02, 1998

Page 1 of 2

Sample ID Lab ID

: SPORT0784-2

: 9808866-02

Matrix

: Soil

Date Collected Date Received

: 08/25/98 : 08/25/98

Priority

: Routine

Collector

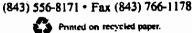
: Client

Parameter	Gnanyjer	Result	DL	RL	Units	DF	Anal	yst Date	Time	Batch M
Volatile Organics BTEX + NAPTH 5	items				_					
Benzene	Ü	ND	0.500	1.00	ug/kg	1.0	JEB	08/30/98	1520	129984
Ethylbenzene	U	ND	0.300	1.00	ug/kg	1.0				
Naphthalene	Ü	ND	0.600	1.00	ug/kg	1.0				
Toluene	U	ND	0.900	1.00	ug/kg	1.0				
Xylenes (TOTAL)	U	ND	0.700	2.00	ug/kg	1.0				

The following prep procedures were performed:

GC/MS Volatiles (8260 High Level)

JEB 08/30/98 0900 129984 2


Comments:

Data reported in mass/mass units is reported 'as received'.

Surrogate Recovery	Test	Percent%	Acceptable Limits
Bromofluorobenzene	BTEX+NAP-8260B	83.3	(53.5 - 154.)
Dibromofluoromethane	BTEX+NAP-8260B	81.5	(63.4 - 136.)
Toluene-d8	BTEX+NAP-8260B	95.9	(72.1 - 137.)

M = Method	Method-Description
M 1	SW846 8260B
M 2	EPA 5035

Meeting today's needs with a vision for tomorrow.

Lat	Laboratory Certifications								
TATE	GEL	ÉPI							
ī.	E87156/87294	E87472/87							
VC	233								
iC .	10120	10582							
īNÍ	02934	02934							

Client:

Supervisor of Ship Building & Conversion

SUPSHIP-Portsmouth Detachment-Env.

1899 North Hobson Ave.

North Charleston, South Carolina 29405-2106

Contact:

Mr. Bill Hiers

Project Description:

SUPSHIP-Portsmouth Detachment

cc: NPWC00197

Report Date: September 02, 1998

Page 2 of 2

Sample ID

: SPORT0784-2

M = Method

Method-Description

Notes:

The qualifiers in this report are defined as follows:

ND indicates that the analyte was not detected at a concentration greater than the detection limit.

I indicates presence of analyte at a concentration less than the reporting limit (RL) and greater than the detection limit (DL).

U indicates that the analyte was not detected at a concentration greater than the detection limit.

This data report has been prepared and reviewed in accordance with General Engineering Laboratories standard operating procedures. Please direct

Blakene

any questions to your Project Manager, Karen Blakeney at (803) 769-7386.

Deviewed By

indicates that a quality control analyte recovery is outside of specified acceptance criteria.

Meeting today's needs with a vision for tomorrow,

Laboratory Certifications

STATE GEL EPI FL NC SC TN E87156/87294 E87472/87/ . 233 10120 10582 02934 02934

Client:

Supervisor of Ship Building & Conversion

SUPSHIP-Portsmouth Detachment-Env.

1899 North Hobson Ave.

North Charleston, South Carolina 29405-2106

Contact:

Mr. Bill Hiers

Project Description:

SUPSHIP-Portsmouth Detachment

cc: NPWC00197

Report Date: September 02, 1998

Page 1 of 3

Sample ID Lab ID

: SPORT0784-3

Matrix

: 9808866-03

Date Collected

: Soil : 08/25/98

Date Received

: 08/25/98

Priority

: Routine

Collector

: Client

Parameter	Qualifier	Result	DL	RL	Units	DF	Anal	yst Date	Time	Batch	M
Volatile Organics	• • •			_		•					
BTEX + NAPTH 5 itel	ms										
Benzene	U	ND	54.5	109	u g/k g	50.	JEB	08/31/98	1323	129984	Ļ
Ethylbenzene	J	63.2	32.7	109	ug/kg	50.					
Naphthalene		388	65.4	109	ug/kg	50.					
Toluene	U	, ND	98.1	109	ug/kg	50.					
Xylenes (TOTAL)	J	183	76.3	218	ug/kg	50.					
Extractable Organics											
Polynuclear Aromatic H	iydrocarbons -	16 items									
Acenaphthene	ับ	ND	6340	13200	ug/kg	40.	RLC	08/28/98	1828	129634	1 2
Acenaphthylene	ប	ND	5810	13200	ug/kg	40.					
Anthracene	ប	ND	3430	13200	ug/kg	40.					
Benzo(a)anthracene	U	ND	2640	13200	ug/kg	40.					
Benzo(a)pyrene	ប	ND	2900	13200	ug/kg	40.					
Benzo(b)fluoranthene	U	ND	5680	13200	ug/kg	40.					
Benzo(ghi)perylene	U	ND	3170	13200	ug/kg	40.					
Benzo(k)fluoranthene	U	ND	5280	13200	ug/kg	40.					
Chrysene	U	ND	2110	13200	ug/kg	40.					
Dibenzo(a,h)anthracene	ប	ND	3300	13200	ug/kg	40.					
Fluoranthene	U	ND	2640	13200	ug/kg	40.					
Fluorene		14400	4490	13200	ug/kg	40.					
Indeno(1.2,3-c,d)pyrene	U	ND	3170	13200	ug/kg	40,					
Naphthalene	_	16100	6200	13200	ug/kg	40.					
Phenanthrene		29800	2380	13200	ug/kg	40.					
Pyrene	U	ND	2900	13200	ug/kg	40.					

The following prep procedures were performed:

GC/MS Volatiles (8260 High Level)

08/30/98 0900 129984 3

+9808866-03+

Meeting today's needs with a vision for tomorrow,

Laboratory Certifications

STATE GEL よるので E87156/87294 E87472 233

10120 10582 02934 02934

Client:

Supervisor of Ship Building & Conversion

SUPSHIP-Portsmouth Detachment-Env.

1899 North Hobson Ave.

North Charleston, South Carolina 29405-2106

Contact:

Mr. Bill Hiers

Project Description:

SUPSHIP-Portsmouth Detachment

cc: NPWC00197

Report Date: September 02, 1998

Page 2 of 3

Sample ID

: SPORT0784-3

Parameter	Qualifier	Result	DL	RL	Units	DF Analyst Date Time Batch M

GC/MS Base/Neutral Compounds

RDH 08/26/98 2015 129634 4

Comments:

Data reported in mass/mass units is reported 'as received'.

Surrogate Recovery	Test	Percent %	Acceptable Limits	
2-Fluorobiphenyl	M610	0.00*	(30.0 - 115.)	
Nitrobenzene-d5	M610	564.*	(23.0 - 120.)	
p-Terphenyl-d14	M610	0.00*	(37.3 - 128.)	
Bromofluorobenzene	BTEX+NAP-8260B	93.9	(53.5 - 154.)	•
Dibromofluoromethane	BTEX+NAP-8260B	81.3	(63.4 - 136.)	
Toluene-d8	BTEX+NAP-8260B	93.0	(72.1 137.)	

M = Method	Method-Description	
M 1	SW846 8260B	
M 2	EPA 8270	
M 3	EPA 5035	
M 4	EPA 3550	

Notes:

The qualifiers in this report are defined as follows:

ND indicates that the analyte was not detected at a concentration greater than the detection limit.

J indicates presence of analyte at a concentration less than the reporting limit (RL) and greater than the detection limit (DL).

U indicates that the analyte was not detected at a concentration greater than the detection limit.

indicates that a quality control analyte recovery is outside of specified acceptance criteria.

P O Box 30712 • Charleston, SC 29417 • 2040 Savage Road • 29414

Meeting today's needs with a vision for tomorrow.

Laboratory Certific

STATE GEL FL E8719 NC 233 SC 10120 TN 02934 E87156/87294 E87472/874 10582

Client:

Supervisor of Ship Building & Conversion

SUPSHIP-Portsmouth Detachment-Env.

1899 North Hobson Ave.

North Charleston, South Carolina 29405-2106

Contact:

Mr. Bill Hiers

Project Description:

SUPSHIP-Portsmouth Detachment

cc: NPWC00197

Report Date: September 02, 1998

Page 3 of 3

02934

Sample ID

: SPORT0784-3

M = Method

Method-Description

This data report has been prepared and reviewed in accordance with General Engineering Laboratories standard operating procedures. Please direct any questions to your Project Manager, Karen Blakeney at (803) 769-7386.

Too

1900 JW'

CHAIN OF CUSTODY RECORD

General Engineering Lacture S, Inc. 2040 Savage Road
Charleston, South Carolina 27407
P.O. Box 30712
Charleston, South Carolina 29417
(803) 556-8171

SPORTOTS4-2 S/25/45 0900 X 4 4 TRIPING COUPLE SPORTOTS4-2 S/25/45 0900 X 4 4 Fill Pine Couple SPORTOTS4-4 S/25/45 0900 X 4 4 Fill Pine Couple							_		-						<i>ن</i> و	<u> </u>	2/							
SAMPLE ID DATE TIME 17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				1		,,	-	SAM	PLE /	NAL.	YSIS F	(EQUI	RED (X) - US	c telem	ks area (o seci	fy speci	ific com	npound	S OF MIC	hods		
SAMPLE ID DATE TIME 17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SPORTEN	V DET (CHAS	N						3	_	<u> </u>	*	╁┸	 				ш		- -	 	╁┸┷	A sauther was mission autom theretaen
590RT0784-2 8/25/13 0730 x 1 1	Collected by/Company		ſ			CONTAIN	enductivity	рос		ide, Fluorid le	e/Nitrate	Specify od required	ALS - specif	3	icide	Phenol	Extractable	atractables		4	ırın - specif	duy-x	1	CCL 34932
SUBETOTS4-2 SUSSIN 0730 K 1 1	SAMPLE ID	DATE	TIME	WELL		10.0	PH.	5	Ş	Selffe	Z I	NA OF OF	MET	T T	Herb	Total	Ack	EN E	Ď	Cyma	S E	876	9,	Remarks
SUBETOTS4-2 SUSSIN 0730 K 1 1	5PORT01841	8 <i>þsl</i> 78	০ প্রক্র	1/2		4															- <u>-</u>	J	/	Under Cill Rips
	5BOKT0184-2	8/25/95	0730	_ _	<u> </u>	1									 						·	_		TRipBlank
	SPORTO784-7	8/25/98	0900	<u> </u>		4																V	v	Below Fank
	SPORTO1844	8/25/85	0900		4		_																	Fill Pipe Couple
Retinquished by: Date: Time: Received by: Photopoly 270 Abruary Ward modern (Aurena (Marchaele)) Retinquished by: Sast 1515 Stacker Ret (astronomy)		,, , 																						
Resinquished by: Date: These: Received by: ADSCAD 1/230 1 April 11 1/20 14 1/20 15 1																								
Resinquished by: Date: Time: Received by: District District Time: Received by: District Di																								
Relinquished by: Date: Time: Received by: Place Date: And Date: And Date: Time: Received by: Date: And Date: And Date: And Date: State				77	11																			
Relinquished by: Date: Time: Received by: Relinquished by: Relinquished by: Plack Divine Ulanda Ulanda under Character Control of State 1515 Klocker in Ketle State Relinquished by: Relinqui				1	$\dagger \dagger$						_													
Relinquished by: Date: Time: Received by: Place D 1230 Ultraco Ultr				$\dagger \dagger$	††	1																		
Relinquished by: Date: Time: Received by: Place District Contract Universal Contract Contra				$\dagger \dagger$	╁┼	 				-					 									
Relinquished by: Date: Time: Received by: Place D 1226 Charge U Local professor C 120 March 1515 Klocker at Root C 150 March 1515				++	$\dagger \dagger$	+		_												<u> </u>				
Relinquished by: Date: Time: Received by: Place District Contract Universal Contract Contra				+	╁	+-		<u> </u>				_												
and by photo 1220 Margo Il Jack work (disson (Uculan to 8/2) 1515 Kloke in Rotle ston	Relinguished by:		Date:	116		Ilece	i yed b	 7'.					L	Rella		ed by:					<u> </u>	Date		Time: Received by:
ON THE STATE OF TH	mospe		8/25/N	12	36	()	/h~	ar	s il	Ja	<u>94</u>	UV	pr	4	114	· ///	(() () Boss)/(,	7	12	8/2	\$/*z	1514 Septanu Betledan
Retinquished by: Bute: Time: Received by:	Melinguished by:	etketon.	Date: \$/25/98	15	40 40	15	ic	in	Č∤	2_				7	14/	<u> </u>	•			_				:

Meeting today's needs with a vision for tomorrow.

Laboratory Certifications

 STATE
 GEL
 EPI

 FL
 E87156/87294
 E87472/876

 NC
 233
 SC
 10120
 10582

 TN
 02934
 02934

Client:

Supervisor of Ship Building & Conversion SUPSHIP-Portsmouth Detachment-Env.

1899 North Hobson Ave.

North Charleston. South Carolina 29405-2106

Contact:

Mr. Bill Hiers

Project Description:

SUPSHIP-Portsmouth Detachment

cc: NPWC00197

Report Date: September 10, 1998

Page 1 of 3

Sample ID
Lab ID
Matrix
Date Collected
Date Received
Priority

: SPORT0788-1 : 9809045-01 : Soil : 09/01/98 : 09/01/98 : Routine

Collector : Client

Parameter	Qualifier	Result	DL	RL	Units	DF	Analy	st Date	Time	Batch M
Volatile Organics									_	
BTEX + NAPTH 5 itel	ms									
enzene		5260	680	1360	ug/kg	500	TCL	09/09/98	1407	130654
r.thylbenzene		47000	408	1360	ug/kg	500				
Naphthalene		50400	816	1360	ug/kg	500				
Toluene		21100	1220	1360	ug/kg	500				
Xylenes (TOTAL)		90400	952	2720	ug/kg	500				
Extractable Organics										
Polynuclear Aromatic H	ydrocarbons -	16 isems								
Acenaphthene	U	ND	32000	66600	ug/kg	200	JCB	09/08/98	1625	130324 2
Acenaphthylene	U	ND	29300	66600	ug/kg	200				•
Anthracene	U	ND	17300	66600	ug/kg	200				
Benzo(a)anthracene	U	ND	13300	66600	ug/kg	200				
Benzo(a)pyrene	U	ND	14700	66600	ug/kg	200				
Benzo(b)fluoranthene	U	ND	28600	66600	ug/kg	200				
Benzo(ghi)perylene	U	ND	16000	66600	ug/kg	200				
Benzo(k)fluoranthene	Ū.	ND	26600	66600	ug/kg	200				
Chrysene ,	U	ND	10700	66600	ug/kg	200				
Dibenzo(a,h)anthracene	U	ND	16700	66600	ug/kg	200				
Fluoranthene	U	ND	13300	66600	ug/kg	200				
Fluorene	U	ND	22600	66600	ug/kg	200				
Indeno(1,2,3-c,d)pyrene	U	ND	16000	66600	ug/kg	200				
Naphthalene	U	ND	31300	66600	ug/kg	200				
Phenanthrene	U	ND	12000	66600	ug/kg	200				
Ругепе	U	ND	14700	66600	ug/kg	200				

following prep procedures were performed:

JMS Volatiles (8260 High Level)

TCL 09/02/98 1038 130654 3

Meeting today's needs with a vision for tomorrow.

 Laboratory Certifications

 STATE
 GEL
 EPI

 FL
 E87156/87294
 E87472/87/

 NC
 233

 SC
 10120
 10582

02934

Client:

Supervisor of Ship Building & Conversion SUPSHIP-Portsmouth Detachment-Env.

1899 North Hobson Ave.

North Charleston, South Carolina 29405-2106

Contact:

Mr. Bill Hiers

Project Description:

SUPSHIP-Portsmouth Detachment

cc: NPWC00197

Report Date: September 10, 1998

Page 2 of 3

02934

_	Sample II)	: SPORT0788-1	·		•
Parameter	Qualifier	Result	DL	RL	Units	DF Analyst Date Time Batch M
GC/MS Base/Neu	utral Compounds					CPU 09/03/98 0045 130324 4

Comments:

A dilution was required for Extractable Organics due to matrix interference. As a result, the detection limits are elevated.

Data reported in mass/mass units is reported 'as received'

Surrogate Recovery	Test	Percent%	Acceptable Limits	
2-Fluorobiphenyl	M610	0.00*	(30.0 - 115.)	
Nitrobenzene-d5	M610	0.00*	(23.0 - 120.)	
p-Terphenyl-d14	M610	0.00*	(37.3 - 128.)	
Bromofluorobenzene	BTEX+NAP-8260B	101.	(53.5 - 154.)	
Dibromofluoromethane	BTEX+NAP-8260B	82.4	(63.4 - 136.)	
Toluene-d8	BTEX+NAP-8260B	121.	(72.1 - 137.)	

M = Method	Method-Description	
M 1	SW846 8260B	
M 2	EPA 8270	
M 3	EPA 5035	
M 4	EPA 3550	

Notes:

The qualifiers in this report are defined as follows:

ND indicates that the analyte was not detected at a concentration greater than the detection limit.

J indicates presence of analyte at a concentration less than the reporting limit (RL) and greater than the detection limit (DL).

U indicates that the analyte was not detected at a concentration greater than the detection limit.

* indicates that a quality control analyte recovery is outside of specified acceptance criteria.

Meeting today's needs with a vision for tomorrow.

Laboratory Certifications

 STATE
 GEL
 EPI

 FL
 E87156/87294
 E87472/87

 NC
 233
 SC
 10120
 10582

 TN
 02934
 02934
 02934

Client:

Supervisor of Ship Building & Conversion SUPSHIP-Portsmouth Detachment-Env.

1899 North Hobson Ave.

North Charleston, South Carolina 29405-2106

Contact:

Mr. Bill Hiers

Project Description:

SUPSHIP-Portsmouth Detachment

cc: NPWC00197

Report Date: September 10, 1998

Page 3 of 3

Sample ID

: SPORT0788-1

M = Method

Method-Description

This data report has been prepared and reviewed in accordance with General Engineering Laboratories standard operating procedures. Please direct any questions to your Project Manager, Karen Blakeney at (803) 769-7386.

Reviewed By

Meeting today's needs with a vision for tomorrow.

Laboratory Certifications

STATE GEL EPI FL NC SC E87156/87294 E87472/8 233 10120 10582

02934

Client:

Supervisor of Ship Building & Conversion

SUPSHIP-Portsmouth Detachment-Env.

1899 North Hobson Ave.

North Charleston, South Carolina 29405-2106

Contact:

Mr. Bill Hiers

Project Description:

SUPSHIP-Portsmouth Detachment

cc: NPWC00197

Report Date: September 10, 1998

Page 1 of 2

02934

Sample ID Lab ID

: SPORT0788-2

Matrix

: 9809045-02

Date Collected

: Soil

: 09/01/98

Date Received

: 09/01/98

Priority

: Routine

Collector

: Client

Parameter	Qualifier	Result	DL	RL	Units	DF	Analyst Date	Time	Batch M
Volatile Organics						_			
BTEX + NAPTH 5	items								
Benzene	U	ND	0.500	1.00	ug/kg	1.0	TCL 09/04/98	2302	130654
Ethylbenzene	J	0.520	0.300	1.00	ug/kg	1.0			
Naphthalene	Ų	ND	0.600	1.00	ug/kg	1.0			
Toluene		1.66	0.900	1.00	ug/kg	1.0			
Xylenes (TOTAL)		2.66	0.700	2.00	ug/kg	1.0			

The following prep procedures were performed:

GC/MS Volatiles (8260 High Level)

TCL 09/02/98 1055 130654 2

Comments:

Data reported in mass/mass units is reported 'as received'.

Surrogate Recovery	Test	Percent %	Acceptable Limits
Bromofluorobenzene	BTEX+NAP-8260B	98.9	(53.5 - 154.)
Dibromofluoromethane	BTEX+NAP-8260B	81.6	(63.4 - 136.)
Toluene-d8	BTEX+NAP-8260B	72.1	(72.1 - 137.)

M = Method	Method-Description	
M I	SW846 8260B	
M 2	EPA 5035	

Meeting may's needs with a vision for tomorrow.

Laboratory Certifications

 STATE
 GEL
 EPI

 FL
 E87156/87294
 E87472/87/

 NC
 233
 10582

 SC
 10120
 10582

 TN
 02934
 02934

Client:

Supervisor of Ship Bailding & Conversion

SUPSHIP-Portsmout Detachment-Env.

1899 North Hobson Ame.

North Charleston. Sant Carolina 29405-2106

Contact:

Mr. Bill Hiers

Project Description:

SUPSHIP-Portsmont Detachment

cc: NPWC00197

RepenDate: September 10, 1998

Page 2 of 2

Sample ID

: SPORT0788-2

M = Method

Method-Description

Notes:

The qualifiers in this report are defined as follows:

ND indicates that the analyte was not detected at a concentration greater than the detection limit.

J indicates presence of analyte at a concentration less than the detection limit (DL).

U indicates that the analyte was not detected at a concentamen greater than the detection limit.

* indicates that a quality control analyte recovery is outsident specified acceptance criteria.

This data report has been prepared and reviewed in accordance with General Engineering Laboratories standard operating procedures. Please direct any questions to your Project Manager, Karen Blakeney at \$603,769-7386.

Reviewed By

Meeting today's needs with a vision for tomorrow.

Laboratory Certifications

STATE GEL FL NC SC TN E87472/87 E87156/87294 233 10120 10582

02934

Client:

Supervisor of Ship Building & Conversion

SUPSHIP-Portsmouth Detachment-Env.

1899 North Hobson Ave.

North Charleston, South Carolina 29405-2106

Contact:

Mr. Bill Hiers

Project Description:

SUPSHIP-Portsmouth Detachment

cc: NPWC00197

Report Date: September 10, 1998

Page 1 of 3

02934

Sample ID Lab ID

: SPORT0788-3

: 9809045-03

Matrix Date Collected : Soil

Date Received

: 09/01/98

: 09/01/98 : Routine

Priority Collector

: Client

Parameter	Qualifier	Result	DL	RL	Units	DF	Analyst Date	Time	Batch	M
Volatile Organics										
BTEX + NAPTH 5 ite	ms									
Benzene	U	ND	0.620	1.24	ug/kg	1.0	TCL 09/08/9	8 1355	130654	•
Ethylbenzene	U	ND	0.372	1.24	ug/kg	1.0				
Naphthalene	J	0.831	0.744	1.24	ug/kg	1.0				
Toluene	J	1.13	1.12	1.24	ug/kg	1.0				
Xylenes (TOTAL)	J	1.18	0.868	2.48	ug/kg	1.0				
Extractable Organics										
Polynuclear Aromatic h	lydrocarbons -	16 items								
Acenaphthene	U	· ND	160	333	ug/kg	1.0	JCB 09/08/9	8 1530	130324	2
Acenaphthylene	U	ND	147	333	ug/kg	1.0				
Anthracene	U	ND	86.6	333	ug/kg	1.0				
Benzo(a)anthracene	U	ND	66.6	333	ug/kg	1.0				
Benzo(a)pyrene	U	ND	73.3	333	ug/kg	1.0				
Benzo(b)fluoranthene	U	ND	143	333	ug/kg	1.0				
Benzo(ghi)perylene	U	ND	79.9	333	ug/kg	1.0				
Benzo(k)fluoranthene	U	ND	133	333	ug/kg	1.0				
Chrysene	U	ND	53.3	333	ug/kg	1.0				
Dibenzo(a.h)anthracene	U	ND	83.3	333	ug/kg	1.0				
Fluoranthene	U	ND	66.6	333	ug/kg	1.0				
Fluorene	U	ND	113	333	ug/kg	1.0				
Indeno(1,2.3-c.d)pyrene	. U	ND	79.9	333	ug/kg	1.0				
Naphthalene	Ü	ND	157	333	ug/kg	1.0				
Phenanthrene	Ü	ND	59.9	333	ug/kg	1.0				
Pyrene	Ü	ND	73.3	333	ug/kg	1.0				

The following prep procedures were performed:

GC/MS Volatiles (8260 High Level)

TCL 09/02/98 1042 130654 3

9809045-03

Meeting today's needs with a vision for tomorrow.

Laboratory Certifications

STATE GEL ΕPI FL NC SC TN E87156/87294 E87472/87 233 10120 10582 02934 02934

Client:

Supervisor of Ship Building & Conversion SUPSHIP-Portsmouth Detachment-Env.

1899 North Hobson Ave.

North Charleston, South Carolina 29405-2106

Contact:

Mr. Bill Hiers

Project Description:

SUPSHIP-Portsmouth Detachment

cc: NPWC00197

Report Date: September 10, 1998

Page 2 of 3

	Sample ID)	: SPORT0788-3		11-1	•
Parameter	Qualifier	Result	DL	RL	Units	DF Analyst Date Time Batch M
GC/MS Base/Neu	itral Compounds					CPU 09/03/98 0045 130324 4

Comments:

Data reported in mass/mass units is reported 'as received'.

Surrogate Recovery	Test	Percent%	Acceptable Limits	
2-Fluorobiphenyl	M610	79.2	(30.0 - 115.)	
Nitrobenzene-d5	M610	85.3	(23.0 - 120.)	
p-Terphenyl-d14	M610	85.4	(37.3 - 128.)	
Bromofluorobenzene	BTEX+NAP-8260B	113.	(53.5 - 154.)	
Dibromotluoromethane	BTEX+NAP-8260B	78.5	(63.4 - 136.)	
Toluene-d8	BTEX+NAP-8260B	72.8	(72.1 - 137.)	

M = Method	Method-Description	
M 1	SW846 8260B	
M 2	EPA 8270	
M 3	EPA 5035	
M 4	EPA 3550	

Notes:

The qualifiers in this report are defined as follows:

ND indicates that the analyte was not detected at a concentration greater than the detection limit.

J indicates presence of analyte at a concentration less than the reporting limit (RL) and greater than the detection limit (DL).

U indicates that the analyte was not detected at a concentration greater than the detection limit.

* indicates that a quality control analyte recovery is outside of specified acceptance criteria.

Meeting today's needs with a vision for tomorrow.

Laboratory Certifications

STATE GEL FL NC SC IN E87156/87294 E87472/87 233

10120

10582 02934

Client:

Supervisor of Ship Building & Conversion

SUPSHIP-Portsmouth Detachment-Env.

1899 North Hobson Ave.

North Charleston, South Carolina 29405-2106

Contact:

Mr. Bill Hiers

Project Description:

SUPSHIP-Portsmouth Detachment

cc: NPWC00197

Report Date: September 10, 1998

Page 3 of 3

Sample ID

: SPORT0788-1

M = Method

Method-Description

This data report has been prepared and reviewed in accordance with General Engineering Laboratories standard operating procedures. Please direct any questions to your Project Manager, Karen Blakeney at (803) 769-7386.

PO Box 30712 • Charleston, SC 29417 • 2040 Savage Road • 29414

(803) 556-8171 • Fax (803) 766-1178

..... Names and

9809045-01

Meeting today's needs with a vision for tomorrow.

Laboratory Certifications

STATE GEL FL NC SC TN E87472/874" E87156/87294 233 10120 10582 02934

Client:

Supervisor of Ship Building & Conversion

SUPSHIP-Portsmouth Detachment-Env.

1899 North Hobson Ave.

North Charleston, South Carolina 29405-2106

Contact:

Mr. Bill Hiers

Project Description:

SUPSHIP-Portsmouth Detachment

cc: NPWC00197

Report Date: September 10, 1998

Page 1 of 3

Sample ID Lab ID

: SPORT0788-4

Matrix

: 9809045-04

Date Collected

: Soil

: 09/01/98

Date Received

: 09/01/98

Priority

: Routine

Collector

: Client

Parameter	Qualifier	Result	DL	RL	Units	DF	Anal	st Date	Time	Batch	M
Volutile Organics										-	
BTEX + NAPTH 5 ite	:ms										
Benzene		6620	588	1180	ug/kg	500	TCL	09/09/98	1753	130654	4 1
-Ethylbenzene		44300	353	1180	ug/kg	500					
Naphthalene		45800	705	1180	ug/kg	500					
Toluene		22500	1060	1180	ug/kg	500					
Xylenes (TOTAL)		81500	823	2350	ug/kg	500					
Extractable Organics											
Polynuclear Aromatic F	Hydrocarbons -	- 16 items									
Acenaphthene	ប	ND	32000	66600	ug/kg	200	JCB	09/08/98	1652	13032	4 2
Acenaphthylene	ប	ND	29300	66600	ug/kg	200					
Anthracene	Ū	ND	17300	66600	ug/kg	200					
Benzo(a)anthracene	U	ND	13300	66600	ug/kg	200					
Benzo(a)pyrene	ប	ND	14700	66600	ug/kg	200					
Benzo(b)fluoranthene	Ü	ND	28600	66600	ug/kg	200					
Benzo(ghi)perylene	U	ND	16000	66600	ug/kg	200					
Benzo(k)fluoranthene	U	ND	26600	66600	ug/kg	200					
Chrysene	U	ND	10700	66600	ug/kg	200					
Dibenzo(a,h)anthracene	t U	ND	16700	66600	ug/kg	200					
Fluoranthene	U	ND	13300	66600	ug/kg	200					
Fluorene	U	ND	22600	66600	ug/kg	200					
Indeno(1,2,3-c,d)pyreno	e U	ND	16000	66600	ug/kg	200					
Naphthalene	U	ND	31300	66600	ug/kg	200					
Phenanthrene	Ū	ND	12000	66600	ug/kg	200					
Pyrene	U	ND	14700	66600	ug/kg	200					

The following prep procedures were performed:

3C/MS Volatiles (8260 High Level)

TCL 09/02/98 1055 130654 3

9809045-04

P O Box 30712 • Charleston, SC 29417 • 2040 Savage Road • 29414 (803) 556-8171 • Fax (803) 766-1178

Printed on recycled paper.

Meeting today's needs with a vision for tomorrow.

Laboratory Certifications

 STATE
 GEL
 EPI

 FL
 E87156/87294
 E87472/8

 NC
 233
 EC
 10120
 10582

 TN
 02934
 02934

Client:

Supervisor of Ship Building & Conversion

SUPSHIP-Portsmouth Detachment-Env.

1899 North Hobson Ave.

North Charleston, South Carolina 29405-2106

Contact:

Mr. Bill Hiers

Project Description:

SUPSHIP-Portsmouth Detachment

cc: NPWC00197

Report Date: September 10, 1998

Page 2 of 3

	Sample ID		: SPORT0788-4	: SPORT0788-4			-			
Parameter	Qualifier	Result	DL	RL	Units	DF	Analyst Date	Time	Batch M	
GC/MS Base/New	red Compounds		, — ,				CPU 09/03/91	R 0045	130324 4	

Comments:

A dilution was required for Extractable Organics due to matrix interference. As a result, the detection limits are elevated.

Data reported in mass/mass units is reported 'as received'.

Surrogate Recovery	Test	Percent %	Acceptable Limits
2-Fluorobiphenyl	M610	0.00=	(30.0 - 115.)
Nitrobenzene-d5	M610	0.00*	(23.0 - 120.)
p-Terphenyi-d14	M610	0.00*	(37.3 - 128.)
Bromofluorobenzene	BTEX+NAP-8260B	101.	(53.5 - 154.)
Dibromotluoromethane	BTEX+NAP-8260B	87.8	(63.4 - 136.)
Toluene-d8	BTEX+NAP-8260B	119.	(72.1 - 137.)

M = Method	Method-Description	
M 1	SW846 8260B	
M 2	EPA 8270	
М 3	EPA 5035	
M 4	EPA 3550	

Notes:

The qualifiers in this report are defined as follows:

ND indicates that the analyte was not detected at a concentration greater than the detection limit.

J indicates presence of analyte at a concentration less than the reporting limit (RL) and greater than the detection limit (DL).

U indicates that the analyte was not detected at a concentration greater than the detection limit.

* indicates that a quality control analyte recovery is outside of specified acceptance criteria.

Meeting today's needs with a vision for tomorrow.

Laboratory Certification

STATE GEL FL E871: NC 233 SC 1012: TN 0293: EPI E87156/87294 E87472/8 10120 10582 02934 02934

Client:

Supervisor of Ship Building & Conversion

SUPSHIP-Portsmouth Detachment-Env.

1899 North Hobson Ave.

North Charleston, South Carolina 29405-2106

Contact:

Mr. Bill Hiers

Project Description:

SUPSHIP-Portsmouth Detachment

cc: NPWC00197

Report Date: September 10, 1998

Page 3 of 3

Sample ID

: SPORT0788-4

M = Method

Method-Description

This data report has been prepared and reviewed in accordance with General Engineering Laboratories standard operating procedures. Please direct any questions to your Project Manager, Karen Blakeney at (803) 769-7386.

Meeting today's needs with a vision for iomorrow.

Laboratory Certifications

STATE FL NC SC TN GEL, E87156/87294 233 10120

02934

E87472/8745 10582 02934

Client:

Supervisor of Ship Building & Conversion

SUPSHIP-Portsmouth Detachment-Env.

1899 North Hobson Ave.

North Charleston, South Carolina 29405-2106

Contact:

Mr. Bill Hiers

Project Description:

SUPSHIP-Portsmouth Detachment

cc: NPWC00197

Report Date: September 10, 1998

Page 1 of 3

Sample ID Lab ID

: SPORT0788-5

Matrix

: 9809045-05

: Soil

Date Collected

: 09/01/98

Date Received

: 09/01/98

Рпопту

: Routine

Collector

: Client

Parameter	Qualifier	Result	DL	RL	Units	DF	Analyst Date	Time	Batch M
Volatile Organics			_		•				
BTEX + NAPTH 5 in	ems								
Benzene	J	0.995	0.765	1.53	u g/kg	1.0	TCL 09/08/9	8 1428	130654 1
Ethylbenzene	U	ND	0.459	1.53	ug/kg	1.0			
Naphthalene	ប	ND	0.918	1.53	ug/kg	1.0			
Toluene	U	ND	1.38	1.53	ug/kg	1.0			
Xylenes (TOTAL)	U	ND	1.07	3.06	ug/kg	1.0			
Extractable Organics									
Polynuclear Aromatic I	Hydrocarbons -	16 items							
Acenaphthene	U	ND	160	333	ug/kg	1.0	JCB 09/08/9	8 1557	130324 2
Acenaphthylene	U	ND	147	333	ug/kg	1.0			
Anthracene	U	ND	86.6	333	ug/kg	1.0			
Benzo(a)anthracene	U	ND	66.6	333	ug/kg	1.0			
Benzo(a)pyrene	U	ND	73.3	333	ug/kg	1.0			
Benzo(b)fluoranthene	U	ND	143	333	ug/kg	1.0			
Benzo(ghi)perylene	U	ND	79.9	333	ug/kg	1.0			
Benzo(k)fluoranthene	U	ND	133	333	ug/kg	1.0			
Chrysene	U	ND	53.3	333	ug/kg	1.0	•		
Dibenzo(a,h)anthracene	e U	ND	83.3	333	ug/kg	1.0)		
Fluoranthene	U	ND	66.6	333	ug/kg	1.0	•		
Fluorene	U	ND	113	333	ug/kg	1.0	•		
Indeno(1,2,3-c,d)pyrene	e Ü	ND	79.9	333	ug/kg	1.0)		
Naphthalene	U	ND	157	333	ug/kg	1.0	1		
Phenanthrene	U	ND	59.9	333	ug/kg	1.0			
Pyrene	U	ND	73.3	333	ug/kg	1.0			

The following prep procedures were performed:

GC/MS Volatiles (8260 High Level)

TCL 09/02/98 1058 130654 3

Meeting today's needs with a vision for tomorrow.

Laboratory Certifications

STATE GEL EPI FL E87156/87294 E87472/874 NC 233

SC 10120 TN 02934

10582 02934

Client:

Supervisor of Ship Building & Conversion SUPSHIP-Portsmouth Detachment-Env.

1899 North Hobson Ave.

North Charleston, South Carolina 29405-2106

Contact:

Mr. Bill Hiers

Project Description:

SUPSHIP-Portsmouth Detachment

cc: NPWC00197

Report Date. September 10, 1998

Page 2 of 3

	Sample ID		: SPORT0788-5			,
Parameter	Qualifier	Result	DL	RL	Units	DF Analyst Date Time Batch M
GC/MS Base/Neu	urai Compounds					CPU 09/03/98 0045 130324 4

Comments:

Data reported in mass/mass units is reported 'as received'.

Surrogate Recovery	Test	Percent%	Acceptable Limits	
:-Fluorobiphenyl	M610	83.6	(30.0 - 115.)	
Nitrobenzene-d5	M610	91.4	(23.0 - 120.)	
p-Terphenyl-d14	M610	89.9	(37,3 - 128.)	
Bromofluorobenzene	BTEX+NAP-8260B	123.	(53.5 - 154.)	
Dibromotluoromethane	BTEX+NAP-8260B	77.4	(63.4 - 136.)	
Toluene-d8	BTEX+NAP-8260B	75.0	(72.1 - 137.)	

M = Method	Method-Description
M 1	SW846 8260B
M 2	EPA 8270
M 3	EPA 5035
M 4	EPA 3550

Notes:

The qualifiers in this report are defined as follows:

ND indicates that the analyte was not detected at a concentration greater than the detection limit.

I indicates presence of analyte at a concentration less than the reporting limit (RL) and greater than the detection limit (DL).

U indicates that the analyte was not detected at a concentration greater than the detection limit.

* indicates that a quality control analyte recovery is outside of specified acceptance criteria.

PO Box 30712 • Charleston, SC 29417 • 2040 Savage Road • 29414

Meeting today's needs with a vision for tomorrow.

Laboratory Certifications

 STATE
 GEL
 EP1

 FL
 E87156/87294
 E87472/87/

 NC
 233
 SC
 10120
 10582

 TN
 02934
 02934

Client:

Supervisor of Ship Building & Conversion

SUPSHIP-Portsmouth Detachment-Env.

1899 North Hobson Ave.

North Charleston, South Carolina 29405-2106

Contact:

Mr. Bill Hiers

Project Description:

SUPSHIP-Portsmouth Detachment

cc: NPWC00197

Report Date: September 10, 1998

Page 3 of 3

Sample ID

: SPORT0788-5

M = Method

Method-Description

This data report has been prepared and reviewed in accordance with General Engineering Laboratories standard operating procedures. Please direct any questions to your Project Manager. Karen Blakeney at (803) 769-7386.

Reviewed By

Meeting today's needs with a vision for tomorrow.

Laboratory Certifications

STATE GEL EPI FL E87156/87294 E87472/874'

FL E87156/87 NC 233 SC 10120 TN 02934

10582 02934

Client:

Supervisor of Ship Building & Conversion

SUPSHIP-Portsmouth Detachment-Env.

1899 North Hobson Ave.

North Charleston, South Carolina 29405-2106

Contact:

Mr. Bill Hiers

Project Description:

SUPSHIP-Portsmouth Detachment

cc: NPWC00197

Report Date: September 10, 1998

Page 1 of 3

Sample ID

Lab ID

: SPORT0788-6 : 9809045-06

Matrix

: Soil

Date Collected

: 09/01/98

Date Received

: 09/01/98

Priority

: Routine

Collector

: Client

Parameter	Qualifier	Result	DL.	RL	Units	DF	Analyst Date	Time	Batch M
Volatile Organics									
BTEX + NAPTH 5 ites	ms								
Benzene		1.81	0.615	1.23	ug/kg	1.0	TCL 09/05/9	8 0354	130654 !
Ethylbenzene		2.46	0.369	1.23	ug/kg	1.0			
Naphthalene		3.10	0.738	1.23	ug/kg	1.0			
Toluene		3.94	1.11	1.23	ug/kg	1.0			
Xylenes (TOTAL)		5.15	0.861	2.46	ug/kg	1.0			
Extractable Organics									
Polynuclear Aromatic H	ydrocarbons -	16 items							
Acenaphthene	U	ND	160	333	ug/kg	1.0	JPA 09/03/9	8 2042	130324 2
Acenaphthylene	U	ND	147	333	ug/kg	1.0			
Anthracene	U	ND	86.6	333	ug/kg	1.0			
Benzo(a)anthracene	U	ND	66.6	333	ug/kg	1.0			
Benzo(a)pyrene	U	ND	73.3	333	ug/kg	1.0			
Benzo(b)fluoranthene	U	ND	143	333	ug/kg	1.0			
Benzo(ghi)perylene	U	ND	79.9	333	ug/kg	1.0			
Benzo(k)fluoranthene	U	ND	133	333	ug/kg	1.0			
Chrysene	Ū	ND	53.3	333	ug/kg	1.0			
Dibenzo(a,h)anthracene	U	ND	83.3	333	ug/kg	1.0			
Fluoranthene	U	ND	66.6	333	ug/kg	1.0			
Fluorene	U	ND	113	333	ug/kg	1.0			
Indeno(1,2,3-c,d)pyrene	U	ND	79.9	333	ug/kg	1.0			
Naphthalene	U	ND	157	333	ug/kg	1.0			
Phenanthrene	Ū	ND	59.9	333	ug/kg	1.0			
Pyrene	Ū	ND	73.3	333	ug/kg	1.0			

The following prep procedures were performed:

GC/MS Volatiles (8260 High Level)

TCL 09/02/98 1106 130654 3

(803) 556-8171 • Fax (803) 766-1178

Meeting today's needs with a vision for tomorrow.

Laboratory Certifications

STATE GEL EPI 1882 E87156/87294 E87472/87 233 10582

10120 02934 02934

Client:

Supervisor of Ship Building & Conversion SUPSHIP-Portsmouth Detachment-Env.

1899 North Hobson Ave.

North Charleston, South Carolina 29405-2106

Contact:

Mr. Bill Hiers

Project Description:

SUPSHIP-Portsmouth Detachment

cc: NPWC00197

Report Date: September 10, 1998

: SPORT0788-6

Page 2 of 3

Sample ID

Parameter	Qualifier	Result	DL	RL	Units	DF Analyst Date Time Batch M
GC/MS Base/New	rmi Compounds					CPU 09/03/98 0045 130324 4

Comments:

Data reported in mass/mass units is reported 'as received'.

Surrogate Recovery	Test	Percent %	Acceptable Limits	
2-Fluorobiphenyl	M610	87.7	(30.0 - 115.)	
Nitrobenzene-d5	M610	75.3	(23.0 - 120.)	
p-Terphenyl-d14	M610	75.5	(37.3 128.)	
Bromofluorobenzene	BTEX+NAP-8260B	95.2	(53.5 - 154.)	
Dibromofluoromethane	BTEX+NAP-8260B	81.3	(63.4 - 13 6 .)	
Toluene-d8	BTEX+NAP-8260B	72.1	(72.1 - 137.)	

M = Method	Method-Description	
М 1	SW846 8260B	
M 2	EPA 8270	
M 3	EPA 5035	
M 4	EPA 3550	

Notes:

The qualifiers in this report are defined as follows:

ND indicates that the analyte was not detected at a concentration greater than the detection limit.

J indicates presence of analyte at a concentration less than the reporting limit (RL) and greater than the detection limit (DL).

U indicates that the analyte was not detected at a concentration greater than the detection limit.

indicates that a quality control analyte recovery is outside of specified acceptance criteria.

Meeting today's needs with a vision for tomorrow.

Laboratory Certifications

STATE GEL FLCSIN E87156/87294 E87472/874

233 10120 10582 02934 02934

Client:

Supervisor of Ship Building & Conversion

SUPSHIP-Portsmouth Detachment-Env.

1899 North Hobson Ave.

North Charleston. South Carolina 29405-2106

Contact:

Mr. Bill Hiers

Project Description:

SUPSHIP-Portsmouth Detachment

cc: NPWC00197

Report Date: September 10, 1998

Page 3 of 3

Sample ID

: SPORT0788-6

M = Method

Method-Description

This data report has been prepared and reviewed in accordance with General Engineering Laboratories standard operating procedures. Please direct any questions to your Project Manager, Karen Blakeney at (803) 769-7386.

CHAIN OF CUSTODY RECORD

General Engineering L2 .es, 2040 Savage Road Charleston, South Carolia 29407 P.O. Box 30712 Charleston, South Carolina 29417 (803) 556-8171

<u> </u>										_	<u>18</u>	U	76	X 4:	5%	2							(803) 556-8171
Client Name/Facility N	ame				T.,	-	SAN	APLE A	ANAL	YSIS I	REQUI	RED (x) - ms	remar	s area	to spec	fy spec	ific con	npownd	s or me	thods		Use F or P in the brases to indicate whether
SPORTENV DET (HASN			_ 2		╅╍┺╌	╁┸	i i		┝┸╦	-	-1-	-		11	H	-4	╨	 	9		sample was filtered and/or preserved		
Collected by/Company ろクカミュート	(VDET				CONTAINERS	3ductivity	8		Chloride, Fluoride, Sulfide	Nitrate	Specify	S-spect	ا پو	ge	henol	rtractable	tractable			n - specif	DULX	*	CCL 35094
SAMPLE ID	DATE	TIME	WELL	SOIL	GRAB FOF C	pH. coc	10CB	ТОХ	Chiorid	Nitratte	VOC -	METAI	Pesticid	Herbici	Total Phenol	Acid Ex	B/N Extractables	PCB's	Cynnide	Colffor	875	HB0	Remarks
5PORT 0788-1	9-1-98	0841		X	4																J	J	NH-46 Dict Pila-1 Trip Blank NH-46 Southend
PagT0788-2	9-1-98	osa		<u> </u>	_/_	ļ														Ŀ	v		Thip Blank
Pagro 288-1	9-1-98	0930	Į,	<u>x </u>	4		_	_											-			س	NH-46 Southend
<u>6787 0758-4</u>	1	ı		<u>x</u>	4	_	-	_									_	_		_	V	-	NHYG North end
52011 0783-5	9-1-98	095		4	4		-								-					 	V	~	NHYG Northend Vertlige Eill Pipe
PCRTO788-6	9-1-98	0950		K	4				_			-			_			_			V	<u></u>	Ell Pipe
_				+		ļ	_					_	\dashv	_			_	_				_	
				\prod	<u> </u>		_								_		_						
					_		_							_ 									
								 			_				_		_						
				\coprod	_	_								_	_			_					
							_	_			,	_		_		_	_			-			<u>·</u>
					-	-							Dell's	relshe						L_	Date		Time: Received by: (
Marked by:	<u>/</u>	Dute: 9-1-98	/3<	<u>)</u>	12	dved b	11/1	_	Gr.	16	.14	1/2	Un	. 30 V	<u> </u>	(6	ار	4.27	<u>; l.,</u>	- 9		28	1540 Rayon Real
Layman De	ed g	Date: /// 978	Ψ. 4	<u>د</u> ا	Reco	<u> </u>	MAN.	~ ~	310	ako	W	L	olif Olife	77	16	5	Rema	· 153:					<u> </u>
hite = samp coll	ector 'Y	ellow = fil	e	P	ink :	wit	h rej	port				l	,										

Attachment III

Certificate of Disposal (tank)

UST Certificate of Disposal

CONTRACTOR

Supervisor of Shipbuilding, Conversion and Repair, USN Portsmouth, VA Environmental Detachment Charleston 1899 North Hobson Avenue North Charleston 29405-2106

TYPE OF TANK

Telephone (843) 743-6482

TANK ID & LOCATION

UST NH46-5; Building NH46, Turnbull Ave., Charleston Naval Base, N. Charleston, SC

DISPOSAL LOCATION

Bldg. 1601 Tank Cleaning & Disposal Area Charleston Naval Complex

Fuel oil	1,500 gal.

SIZE (GAL)

CLEANING/DISPOSAL METHOD

The tank was cut open on both ends, cleaned with a steam cleaner, cut into sections, and disposed of as recyclable scrap metal.

DISPOSAL CERTIFICATION

I certify that the above tank has been properly cleaned and disposed of as recyclable scrap metal.

Carl Jenkins (Date)

APPENDIX B

GEOLOGIC BORING LOGS

-		NAME			shipya	,d	Site 29 BORING N	UME	BER: # CNC	<u>26</u>	E	30	1
		NUM		NOI	<u> </u>	5-4	DATE:	_	S/13/99				
		COMI	PANY:		Tide			51:	Sksco	_			_
DKIL	LING	RIG:			Ge-				mart Cole				=
Sample No. and Type or RQO	(FL) or	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Changs (Depth/Ft.) or Screened Interval	Soll Density/ Consistenc y or Rock Hardness	Color	RIAL DESCRIPTION Material Classification	U % C % *	Remarks	Sample State	N	Ì	Driller BZ
	1						2" asphalt		dry	2			
	2			ak	brow	17	sand silt		dry	7			
	3	\angle			bro.	٠,,	Sandy Silt		moist	N			╝
	4	/	2.	5'			Sangeilt		mist	2	-	_	\Box
	5			1	boon		sondy silt		noist				_
	6	/					Sondy silt	_	moist			\dashv	
\mathbb{W}	7	\leftarrow		050		h 6	, sandy silt		moist	2	7	3	_
14	8	-	3.	j ,	(6 6	,	funda silt	<u> </u> 	mo int	4	<u> </u>		ျ
' –		\leftarrow		_^	k bro	WA			mersk		_		\dashv
	(0	-			<u> </u>	 	sandy silt			Н			러
	11	_		.	prang	Ł	54nd		saturatea	\square			-
	12	-	3.8	1	brung	<u> </u>	sand		Saturated				\dashv
<u> </u>				14.5	- Parker		Sand		Saturafa	\vdash			\dashv
	14 15					-	Sand	_	59 houted				\dashv
<u> </u>	16		41	2		<u>*</u>	5914 667 d		gatura had				\dashv
			/ , 	EQB			3409		94 100 0100	-			
_				1									
		/_	<u> </u>	 				_			_		Ш
		/]			-	_					
	<u> </u>	/		1				_					
· -				han									
** Inclu	ide mon	oring, ente itor readir			@ borehole	. Incre	ease reading frequency if elevated repon	se rea					
	arks:								Background	(pp	m):		
CON	/ertec	i to We	:ll: /7 /	Y eş			No Well I.I	ノ. #:					

D		NG			
H()	KI	NI		l)	(=
-		-	_	${}$	•

Page ____ of ___

PRO	JECT	NAME	≣:	CNC	Sile	29	Bldg NH46	BORING N	UME	BER: CNC29	7-	B	Ø	2
		NUM	BER:	NOI	6 4	70	one t	DATE:	_	5-13 3/3cu		_		_
_		COMI RIG:	PANY:	2,	50 /5	7/1	a	GEOLOGIS	\$1:	COLEMAN				_
DKIL	LING	NG.						•	· .	CULTIVIAN			_	_
Sample No. and Type or RQD	(Ft.) or	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Changs (Depth/Ft.) or Screened Interval	Soil Density/ Consistenc y or Rock Hardness	Color		sification	U S C S .	Remarks	Sample	Sampter BZ	Borehole**	Driller 82** d3
	1	\angle					2" GSPhe	n/+	*	dry				
	2	\angle					for fill on	terial	-	- ary				
	3									- dry		_		
	4		2.2	do	brow	^	sandy si		4	worst				_
L	5			ale	brow		sandy si			250 cm		_		
	6	\angle					54-dy 5	:16	-	moist				
\bigvee	7	\angle		r.d	eark bu	-	Sandy	silf	4	noise				7
	8		4/	v.d	k.br.		Surda S		4	moist	7	4	*	기
	9			1t	br.		Sandy	<i>wilt</i>	Ц	moist				
	10	\angle	-	72	hr.		Shady	8ilt		uef	_			
	<u> </u>		ļ	1.	br.	ļ	sandy s			vet		L		
	12		3.8		br.		15 mod 9 5	TH Sau	d	saturati	*/			
		\angle		Epp					_		_			
		/		ļ		<u> </u>			<u> </u>	•				
<u> </u>	<u></u>	\angle	,						ļ		_	ļ_		
L	<u> </u>					<u> </u>			<u> </u>		ŀ.,	<u> </u>		Ш
		/				<u> </u>			<u> </u>		<u> </u>	上	<u> </u>	Ц
		/				<u> </u>			-			<u> </u>		Щ
		/							<u> </u>		ļ. <u>.</u>			\square
						<u> </u>			-		-		ļ	Ц
						<u> </u>			<u> </u>		ļ. <u>.</u>	_	_	Ц
		4		1		<u> </u>			ļ —-		1	_	-	Ц
		/				_			ļ			_		
											-			
								_						
⊷ Indi Rem	ode mor arks:	itor readi	er rock brong in 6 foo	ot intervals	@ borehole	e. Incre	ease reading frequency	if elevated repor		Background	_			

PRO	JECT	NAM	Ξ:		Shi) Y &		UME	BERCNC29 BO	3			
		NUM		N	0164	<u> </u>	Sida NH46 DATE:		5/13/99				_
		COM	PANY:	_7	· dela) I.	5.00				
DRIL	LING	RIG:			امحم		<u> </u>		Mark Cole			_	_
Sample No. and Type or RQD	(FL) or	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft,) or Screened Interval	Soil Density/ Consistenc	Color	RIAL DESCRIPTION Material Classification	0 % 0 % •	Remarks		ì	Borehole** 6ug	Orlier BZ** dd
<u></u>	Ø				Hardness		0.4					_	
	l l						2"asphalt		ary				
	2	/	<u> </u>		dk b		Sandy Silb		dry		٠		
<u></u>	3				UKL	L.	51~d,5116		dry				
<u> </u>	4		23	} ′	dEb	-,	sandy silt		dry				
	5			V	dk b		sanda silt		dia				$\sqrt{}$
	6	\angle		dkr	eddish		Sandy Silt		dry	7	_(t	ひ	/
\square	1			り	son		andy solt		dra				
	8		41	li li	11		SANdy Silt		dry				
<u></u>	9			700	19134	b.r.	sandy silb		moist				
J	18	\angle		1	+ bro		Sandy Silt		mist				
	11			10	bron		59ndy 51/6		Saturated				
	12		36"				<i>sund</i>		saturated				
		\angle		EUB									
		/_											
<u></u>													
	·	\angle							<u> </u>				<u> </u>
											<u>'</u>		<u> </u>
											_	<u> </u>	$oxed{oxed}$
		<u>/</u> ,								<u> </u>		<u> </u>	_
<u></u>													L
													_
<u> </u>													
							•						
		-	r rock bro						, D.200	- ^			,
Rem		ntor readin	ig in 6 foo	t intervals	@ borehole.	Incre	ase reading frequency if elevated repon	se rea	a. Drillir Background				<u>t</u>
Conv	ertec	to We	H:	Yes		,	No Well I.I.), #:				••••	

		BORI	NG LOG	Р	age $\underline{/}$ of $\underline{/}$
PROJECT NAME:	CNC Site	29 Bldg NH46	BORING NUMBE	R: CNC	29-BO4
PROJECT NUMBER:	NOILLY	Zone C	DATE:	5-/3	· ·
DRILLING COMPANY:		,	GEOLOGIST:	51500	

DRIL	LING	RIG:		2	50/	m	SUOD DRILLER:		COLEMA	V			_
					N	ATE	RIAL DESCRIPTION			PID/F	ID Rea	ding	(ppm)
Sample No. and Type or RQD	(Ft.) or	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Intarval	Soil Density/ Consistenc y or Rock Hardnass	Color	Material Classification	0 % C % •	Remarks	Semple	Sampler BZ	Borehole**	Driller BZ**
	1	\angle					Asphot/buckfill Sundy Silt sound, silt		dry dry				
	2				dk.	6-	Sandy Silt		dry	4	٠		
	3				dle.	br	sand gilt		anosin.	4)			
	4		2.5		_		sandy silt		noish				
	5				0141		cardy silt		noist	4			
	6			0	-angv	5 h	Syndy silt		moist				
\mathbf{M}	7	\angle			bri	nn	sandy silt		moist		4		
	8	\angle	41		L1	~	Sandy silt		moist	<u> </u>	7	5	
<u> </u>	9	\angle			٠,		Sandsill		moish				
	10	\angle		_16	brow	- -	54 nd		net				
	//	\angle		14	-brou	rgn	Shad		Saturated	V			
	12		41	14	brou	/ ~	sand sand		Saturated	_			
		\angle		EOR								_	
		\angle						<u> </u>	_				
				[
									·				
								_					
								ļ					
								<u> </u>		L			Ш
								<u> </u>		_			
											·		

When rock coring, enter rock Include monitor reading in 6 Remarks:		rehole. Increase readin	g frequen	cy if elevated reponse read.	Drilling Area Background (ppm):
Converted to Well:	Yes	No	X	Well I.D. #:	

		NAME		CNC	5ite	29	BIDG NHUG BORING N One C DATE:	UMI	BER: C/VC29-		D / <u>/</u>	<u> 25</u>		
L BBU		NUM		NO	104	Zc	one C DATE:	eT	5-13 51500					
U <u>B</u> III L		COMI	PANT.		601	<u>_</u>		31 .	COLEMAN					
DNIL	LIIVO	RIG.	ı		50/		RIAL DESCRIPTION			D10.00		<u> </u>	=	
Sample No. and Type or RQO	(Ft.) or	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Sofi Density/ Consistenc y or Rock Hardness			ນ ທ ບ ທ •	Remarks	eldmas	Sampler BZ x	Borehole ¹	Driller 62** (udd	
:	7			<u>L</u>			Asphalt Sarrysilt		Dex					
	12			} ,	7.310U	~	Sache Silt		Nort	3.	-	\Box		
	3				Brow		11 11		Moist	3.5	<u> </u>			
	4		2,5	!				<u> </u>		-	f^-			
	5	<u></u>			Avou	λ,	Sardysilt brick			1				
	6						rock			4	_			
	Ł					_				<u> </u>	<u> </u>			
ΔZ	8		1.5]						<u> </u>	Ł_			
\wedge	9				dkb	<u>.</u>	sandy silt	ļ .	noist net	10	<u>5</u>	H.)
	10				dk b	P.,	silty Gand		net	10	<u></u> _	ليو	Fi	[tea
Wan-sa-	1/				1+br		55-01		Saturated	4_	_	<u></u>		
	12		41		1tibr		Sandy silt Silty Gand Sand		Saturateo	L	_	<u> </u>		
		/_		€01	<u> </u>		_		<u>.</u>	<u> </u>	ļ	<u> </u>		
			[<u> </u>	<u> </u>			1
	,	/								<u> </u>	-	<u> </u>		Į
		/_								<u> </u>	_	ـــــــــــــــــــــــــــــــــــــ	_	
				<u> </u>							<u> </u>			ļ
_										_	_			
			<u> </u>					ļ				_	<u> </u>	
								<u> </u>					L	ł
								<u> </u>						
			<u> </u>						1			<u> </u>		
														1
]										
		oring, ente			@ borehole	incre	ease reading frequency if elevated repon	ise rea	nd. Drillin	ng A	\геа	_ <u></u> 3		4
	arks:								Background				5	
Conv	erted	to We	<u></u>	Yes			No Well I.I	D. #:						-

Page 1 of 1

CNC 29 - ROLO

-		NAME		CNC	<u>. Site</u>	20	BID NHUL BORING N	UMI	BER: CNC A	<u> </u>	_0	V	0
		NUMI COMF		NOII	Le U	70	DATE: GEOLOGIS		5-13 5150				
		RIG:	ANT.		250	<u> </u>	DRILLER:	JI.	COLEMA				
		 ,				₹ -	RIAL DESCRIPTION]		PID/FI	D Rea	ding	(ppm)
Sample No. and Type or RQD	(FL) or	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soll Density/ Consistenc y or Rock Hardness	Color	Material Classification	0808.	Remarks	Sample	Sampler BZ	Borehole**	Orller BZ**
	7						Asphalt						
	2				Overge		Backfill, sandysitt	2	dry	4	•		
	3				Aron	r	Sardy silt		dry	C/			
	4		3.5		Bron	in.	n / 11		<u>, </u>	4			
	5	\angle		ŕ	dkb.	سره	Stilled & silt		or danse	4			
	9			me	H60	d	Shady Silt		v. dense	4			
. ^	7	-	411	ol	K 6 00	~ ~	Sandy Silt		med. stiff	9			
\mathcal{X}	8		41	ن	,	<i></i>	silty sand		moist	7	7	7	씸
1	10			0	116 67	0 ~	Sand		noist net		H		\vdash
	<i>[]</i>			4 / ! !	- loro	4 111	_						
	12		41	1 £.	bro	-	56~d		saturated Saturated				
	16-6			809	<u> </u>								
													Ц
								_		_		<u> </u>	Ц
		/_					_			├_			Ц
		$\langle - \rangle$						-		├-] 	ļ 	${\mathbb H}$
										-	_		\vdash
		$\langle - \rangle$									-		
							_						$\forall \exists$
							-			 -			
	de mon	_	r rock bro ig in 6 foot		@ borehole.	Incre	ase reading frequency if elevated repon	se rea	d. Drilli Background				4
C		4- 18/-	11.	\/			No. Well I	· 4.	_				

PRO	JECT	NAME	<u>:</u>	CNC	Site	29	Bldg NH46 BORING N	UME	_{BER:} CNC 29	-	B	R	17
PRO		NUM	BEK:	NOI	4		Zonec DATE:		フィノマ				_
[COM	PANY:		7 (7)	1	GEOLOGIS		31500				_
URIL	LING	RIG:			250		400 DRILLER:		COLEMAN				=
Sample No.	(FL)	Blows / 6" or RQD	Sample Recovery	Lithology Change (Depth/Ft	Soil	IATE	RIAL DESCRIPTION	U S	[PIDAFI	Rea		(ppm)
and Type or RQO	or Run No.	(%)	Sample Length	or Screened Interval	Density/ Consistenc y or Rock Hardness	Color	Material Classification	C S	Remarks	Sample	Sampler B2	Borehole	Driller BZ**
1	1								,				
	2										·		П
	3	\angle			bren	r	Sandy Silty		dry				
	4		21		brom	L	Sandy Sill		61	4	2		Ш
	5						sardy silt		41				
	6				blk.		2" lager asphaff		ary				
Δ	7		2.5	4	bron	n	sandy wilt		dry	2			
<u> </u>	8		2.5	!	brow	~	Genty Silty SA	×	moish	1		1-	Ы
	9			Or	11966	7.	Silty sand		vet	į,		T.	Υ
_perturbation	10		•	1	br		Sand/gravel		saturated				
	11			14	. br		Sand		Saturated				
	12		41	(4	· . br.		sana		saturated				
	13	\angle		/ (br.		Sand		Saturated Saturated				\square
	14			1			Sand		Satvated				
	13			,			sand		"	L			
	16		3/6			<u> </u>	sand		c 1				Ш
	17												
	18												
	19								_			 	
	20		01										
	21			14.61	orn		sitlysand						
	22			g.	can		Silty sand						
ĺ	23			q	44		silly and lotson	FSH	ells framonts				
	24		4	ro	line		silly sond "	ı	cohesia.				
	25												
		oring, ente			@ heretala	le ==:			d. Drillir	α Δ	res		_
Rem		nor readin	ун ю 1001	HHEIVAIS (w wrenoie.	incre	ase reading frequency if elevated repons	se rea	a. Drilli Background	-			1
Conv	erted	to We	II:	Yes			No Well I.D), #:	·			_	
							1				-		

		NAME		CNC	- Site	29	Bldg NH46 1	BORING N	UMI	BER:	CNC 27	_	D	Z	7	, co
				NOT	6 4	_	Zone C	DATE: GEOLOGIS	2Т.		5/300					
		RIG:	AIII.		250	1 5		DRILLER:	J 1.		COLEMA	v				
							RIAL DESCRIPT			_			D Rea	adina	(ppm)	
Sample No. and Type or RQD	(FL) or	Blows / 5" or RQD (%)	Sample Recovery / Sample Length	Change (Depth/Ft	Soil Density/ Consistenc y	Color			U S C S		Remarks	algene	Sampler BZ	:	Driller BZ**	
	26										and the	<u> </u>		L		
	27			d	k 9 19.	-	Silta Sa.	ad wiso	~ ,	da.	Lohesine					
-	28		2:	}' d	kgra	7	silty san	£ \$50	ne	2/44	Cohesin	-				
<u> </u>		//				·								<u> </u>	Н	
_				ł	<u> </u>	<u> </u>									Ц	
		-		-	<u> </u>				_			<u> </u>	\vdash	<u> </u>	\dashv	
		//		-	ļ							<u> </u>			Н	
				ļ					<u> </u>				_		Ц	
		_		1					_					ļ	Н	
		//			ļ . 				<u> </u>					_	Н	
	L	-		1					_	_		<u> </u>	_	ļ		
_		-			<u>_</u>		<u> </u>		_				_	 	\vdash	
		-					····-						ļ	├	Н	
									-					-		
	٠- ,			1					_	_		_	_	<u> </u>	Н	
												_		 		
-	L		<u> </u>	}					_	-			-	-	H	
														-	Н	
															Н	
													╫	}-	Н	
									-	\vdash			-	-	H	
										<u> </u>	· · ·				뮈	
									-				 -	 	H	
						-	_						-	-	H	
		ring, enter			@ borehole	Incres	se reading frequency if e	elevated renom	se rea	ıd.	Drillin	na A	rea	l	Ш	
Rema										-	Background					
Conv	erted	to Wel	1:	Yes			No	Well 1.). #:							

		NAME		CNC	Site	29	Bldg NH46	BORING N	UMB	ER: <i>CNC 2</i>	<u>7 -</u>	E	10	8
		NUMI		NOIL	<u>,4</u>	Z	one c	DATE:		5-14 SISCO				
***		COMI	PANY:					GEOLOGIS	51: _	3/500				
DRIL	LING	RIG:			50		700	DRILLER:		Coleman	<u>_</u>			_
Sample No. and Type or RQD	(FL) or	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soil Density/ Consistenc y or Rock Hardness		RIAL DESCRIP	,	U & C & +	Remarks	Sample		Ĭ	Driller BZ** d
<u> </u>	1						As shall	L:11		Dev				\exists
	2			Ì	Br.		Sardy &	:/+		DRY	1			
	3				Dr.		1	•		DRY	4			•
	4		3					<u>-</u>				L		
	5	/	_		H.Br		Sarlys	1//		Most	4			
	6	/	_		1		M (15)	me fill		<u>''</u>	4			
X	7	/_	0 -		TAU		Silty Sa	ind		· · · · · · · · · · · · · · · · · · ·	4	\perp		Щ
<u> </u>	8		3.5		Dr.	<u> </u>	11 11	7		Mrst	7		\vdash	
	7		_	•	Br.		51/ty	Mid	\vdash	010758	17	\vdash		— İ
Water ver	70				- M.O	ļ	0.11	- 1		Mey Control	K	_		\vdash
_	11/		H		B		Salty 2	ers	 	Sotunated	K			\dashv
	12	$\overline{}$	<u> </u>	EOB	Giray	 	Servel			Sat.				
-			_	2-0		╁			-		+-	_		\dashv
<u> </u>						 			\vdash		+-	_		-
<u> </u>				1					.8	<u> </u>	-	-		H
一			<u> </u>			ļ					╁╌			H
	ļ -		_	1					3		1-	-		H
							_				,			\sqcap
L														
		/						•			<u> </u>	_	L	Ш
_		/	_]		<u> </u>					ļ	_		Ц
۱ _														Ė
··· «Tnclu		nitor reading	er rock bro		@ borehole), Incre	ase reading frequency	if elevated repon	se read	d. Drilli Background	ng A d (pp			,. 5
Conv	verted	to We	ell:	Yes			No X	Well I.[D. #:					

		NAME		CNC	Site	29	Bldg NH46	BORING N	UM	BER:	CNC 29	^ 4	54	99	, —
		NUME		NOIL	4	7	onet	DATE: GEOLOGIS	эт.		5-17				
		RIG:	ANT.		0501		-	DRILLER:	> 1 .		COLEN	_			
		TAIO.				<u>5 7</u>	RIAL DESCRIP	<u> </u>			COCETY		_	41	_
Sample No. and Type or RQD	(Ft.) or	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soil Density/ Consistenc y or Rock Hardness				□ ળ ∪ ળ ∗	F	Remarks	Sample	Sampler BZ	Borehole**	Dritter BZ**
	1						asphalt, f	i tt		đr		4			
	2				1ild Br		sandy olet				Lity moist	4			
	3				POBO		sandy slit	-		ر لہاءٰائ	<i>(,</i> (4		,	
	4		3				slity sand			mai	1	4			
	5				libetBr		book utile					\prod			
	6	\angle			7		1								
¥	7	\angle			Br							$\perp \! \! \perp$			
\Box	8	\angle	_3	_	<u> </u>		*			1	<u>, </u>	1			
<u> </u>	9	\angle		₹	<i>′</i> ₺<		slity sand	·		west	-	4			لـــا
	10	\angle			arey		esara			sat		<u> </u>	_		Ш
	11	<u> </u>			<u> </u>					$oxed{oxed}$		<u> </u>			
<u> </u>	12		<i>3.</i> 5		<u> </u>		W			1/		上			Ш
		-		EOB								+			
		-								<u> </u>		 	<u> </u>		\vdash
		-										+	_		$\vdash\vdash$
		$\overline{}$										┪	-		
		-							<u> </u>			+		\vdash	\vdash
		$\overline{}$										+			
		$\overline{}$										+			
												-	-	-	
										-		+	 		
												+			一
												+-		 	
									-						\vdash
** Inclu			r rock bro g in 6 foo		@ borehole.	Incre	ase reading frequency i	if elevated repons	se rea	d.	Drill Backgroun	ing A			<u></u>
		to We	11.	Yes			No V	Well I.D	`#.	-	Davingiouii	~ (PP			<u></u>

		NAME		CNC	Site	29	Blodg NH46 Lone C	BORING NU	JME		9-1	<u> </u>	(Z)	
		NUME		NOI	_ به م	7	Lone C	DATE: GEOLOGIS	т	5-14 51500				
	LING		AINT.	2	50/3	有口	3	DRILLER:	٠	COLEM	Da I			—
		i						•	 i					=
Sample No. and Type or RQD	(FL) or	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soll Density/ Consistenc y or Rock Hardness		RIAL DESCRIPT . Material Class	· · ·	U S C S	Remarks	Sample	Sampler BZ	Borehole**	Orller BZ** dd
	l		-				oncrete			Day		/		
	2						Cwyslow-1	un		1				
	3				Br.		Crushow . N Sandy S	itt		1	4	- "		
	4		لى								1			
	5				Der.		Sardy So	117		Day	4			
	<i>ع</i> ا	\angle			Br.		Soudys	:17		DRY	4			
	7										<u>.</u>	_		
	8		2				-							
	9				Bo.		Sardy S	ilt		DAK	a			
ν,	101				Drou	2	te w/n	ddk frag	5.	"	9			
T	M				1. 2.	_	le aid:	ione Quit	$\overline{}$	Moist	4			
*	la		3		-	_								
	13	\angle		-	Dio	m	Sardysi	16		Moist				
	14				HBr		52/H 50	end		Wed				
	15				"		Said	_		Saturated				Ш
	16		4	,	way		Sand			Sat.		<u> </u>		
ļ	`			Cos										
		$\overline{}$								_		T	† <u>-</u>	1
		$\overline{}$				-			_			†	-	
 	_					<u> </u>					+-	+	-	+
<u> </u>			_			 -						╀	-	
<u> </u>	ļ	<u> </u>		<u> </u>								<u> </u>	ļ	\
		<u>/</u> ,				<u> </u>						L		
he	nock c	oring, ente	er rock bro	keness.		·				·				
~indi Rem	ide mon arks:	tor readin	ng in 6 foo AF NLA	t intervals	@ borehole	Incre	ase reading frequency	if elevated repons	e rea	Dr Packground Pack (2)	illing A ind (nr	vea vea	 	
I CII	ui NJ.	امر	المار المال	~	~ (T! 'Y'	, U !		For R	PA	to DOCK	OBC	<u>06</u>	<u>,</u>	• >
Con	verted	to We	II:	Yes			No X	Well I.D), #:		_			

BORING	ı	O	G
DUNING	ᆫ	U	U

Page <u>1</u> of <u>1</u>

PRO	JECT	NAM	≣:	CNO	2 Site	e 29 Blog NH46 BORING NI		G NUMBER: CNC 29 - B1						
		NUM		NOI	64		Zone C	DATE:	:	5-14 315 CD			_	_
		COM	PANY:			į.		_	ST:					
DRIL	LING	RIG:				540		DRILLER:		COLEMA	<u>~</u>			_
						IATE	RIAL DESCRIP	TION			PID/FI	D Rea	ding	(ppm)
Sample No. and Type or RQD	(FL) or	Blows / 6" or RQD (%)	Sample Recovery ! Sample Length	Lithology Change (Depth/Ft.) or Screened interval	Soil Density/ Consistenc y	Color	Material Class	sification	0 0 0 0 .	Remarks	Semple	Sampler BZ	Borehole**	Oriller BZ**
	1	4			-		Asphalt. Sendy &	, R://		lvy	K,			
<u> </u>	2	/_]	Fan		Serly &	i /4	Ш		7	Ц		
<u></u>	3							ti		√	4			
	4		2.5	1										
	5] ,	Ct.B	,	Sardy-	s,'/t		Moist	4			
	6				7.		11			"	4			
X.	7				٠)		- 11			61	4			
	8		4]	For		Silty So	red		MHZt	4			
	9			200	ten		Silty Si	eve		Moist	4	Ш		
	10		<u> </u>		11		Ü.	11		Wet				
	11				quas		Sard			Safurted				Ш
	<i>r</i> a				Gray		Sard			il	1			Ц
					(
														Ш
							,				1			
** Inclu		itor readir	er rock bro		@ borehole	. Incre	ase reading frequency	if elevated repons	se rea	d. Drilli Background	_		_	1

Well I.D. #:

Converted to Well:

Page 1_ of 1

C1/C29 - R11

All LINC RILLING Property of Part Proper	RIG:	Sample Recovery / Sample Length	Lithology Change (Depth/FL) or Screened Interval	Soil Density/	TE	BIGG NH46 Zone C DATE: GEOLOGI DRILLER: RIAL DESCRIPTION Material Classification Asphalt & C' // Sandy sift 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	IST: ₋	Remarks Day Day Moist () ()	PIDIFI endures	, l	Borehole	Driller BZ** d
Depth of (Ft.) or Run No. O 1 2 3 4 5 6 7 9 10 112 12 13	Blows / 6" or RQD	Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soil Density/ Consistency or Rock Hardness By. By. By. Lt. By.	Color	Material Classification Material Classification Asphalt & Fill Sandy sift 1. Silty send 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	U S C	Day Day Moist	PiD/Fi			
0. (FL) or Run	6" or RQD	Recovery / Sample Length	Change (Depth/Ft.) or Screened Interval	Soil Density/ Consistenc y or Rock Hardness By. By. By. Lt. By.	olor	Material Classification Asphalt & C' !! Sandy siff !! Sifty send !! !! !!	S C	Day Day Moist	Semple Semple			
3 4 5 6 7 8 9 10 11 12 13			•	Br. Br. Br. Br. H.Br. u		Silfy send		Moist 1,	4			
3 4 5 6 7 8 9 10 11 12 13			•	Br. Br. Br. H.Br. u		Silfy send		Moist 1,	4			
4 5 6 7 8 9 10 11 12 13			■	Br. Br. Br. H.Br. u		Silfy send		Moist 1,	4			
5 6 7 8 9 10 11 12 13			▼	Br. H.Br. u Lt.En		(1 -)		Moist 1,	+-			
6 7 8 9 10 11 12 13		3.5	₩.	Br. H.Br. u Lt.En		(1 -)		<i>l</i> ,	+-			
9 10 11 12 13		3.5	₹	H. Br.		(1 -)		<i>l</i> ,	4			
9 10 11 12 13		3.5	▼	4 Lt. 84.		(1 1)		· · · · · · · · · · · · · · · · · · ·	9			
9 10 11 12 13		3.5	•	Lt. 84.		0.11		l t				L
10 11 12 13			•		_	Silty Sand	l I		4			L
 12 13				Grave		. ,		Uht	4			_
13		 				Sand		Saturated				L
13	1/	, ,	_	Gray		Sand		()				L
	-1	4		avage	,	Sur		()				L
14			100				-		-			L
		, ·								<u> </u>		L
			EOD						↓_			L
		ļ <u></u>	_									Ļ
	\angle	<u> </u>	_					·	1_			ļ.,
- 1									<u> </u>	L		L
									ļ	L		L
												L
						•						L
		<u> </u>	_									
										<u> </u>		
nclude mo emarks:				@ borehole. I	ncrea	ase reading frequency if elevated repo	nse read	d. Drilli Background	-		4	E

		NAME	E: BFR:	CNC	Site	29	Bidg	<u> </u>	нць вогінд NUMBER: (NC 29- B1) DATE: 5-/4 GEOLOGIST: 5/50					<u>3</u>		
		COM	PANY:	NDU			one c		GEOLOGIS	ST:		5150				—
DRIL	LING	RIG:		- :		540			DRILLER:			COLEM	sw			
						_	RIAL DE	SCRIPT	ION				PID/FI	D Rea	ding	(ppm)
Sample No. and Type or RQD	(Ft.) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened interval	Soil Density/ Consistenc y or Rock Hardness	Color	Mat	eria! Classi	fication	บ ธ ธ ร	R	emarks	Sample	Sampler BZ	Borehole**	Driller B2**
	0						daes	H F.	4		dr	vi	3/		\neg	-
<u> </u>	2	$\overline{}$			1			at, fo 1 sil+	•	1			3			\dashv
┞─		-			br		Sanai	(31+		\vdash	ma	pist	_	\dashv	\dashv	\dashv
	3	-			\vdash		,	_	_				3			\vdash
	4		2.5		<u> </u>							<u> </u>	3		_	
	5			//	<u>. </u>								3			
	6												3			Ш
	7												3			
X	8		4		-			/		П	$\overline{}$	/	3			
	9		,	7	by		sith	l san	1		<u></u>	et		'		\Box
	10	$\overline{}$			lichto		1	' \	и		Sect		+	_		П
	11				tan		<u> </u>	nd			3 <u>8C</u> 1					
	12	$\overline{}$	Ц		1001			<u> </u>			\dashv					H
	13	$\overline{}$	4	777	- V		v	_	_	 			+			\vdash
	14	-					_			\vdash			<u>.</u>			H
		$\overline{}$		EOB	 					 			+			Н
									_					-		
┝	 	$\overline{}$	<u> </u> 	<u> </u> 		 				\vdash			+	_	<u> </u>	Н
		-		1						-						Н
		-		1											_	Н
<u> </u>		-		-						 						\vdash
⊢		-		1						-	_				_	Н
_		-		-		_				╁						\vdash
<u> </u>		\angle				ļ				╀				L	<u> </u>	
		<u>/_</u>								1			\perp			Щ
		\angle						_							<u> </u>	
* When ** Inclu Rem	rock co ide mon arks:	oring, enter itor reading	er rock brong in 6 foo	okeness. ot intervals fsca	@ borehole	Incre	ease reading	requency i	elevated repor	ise rea	d.	Dri Backgrou	illing A nd (pp			•)
Conv	/ertec	to We	:II:	Yes	X	-	No _	_	Well I.	D. #:						
7	IEZ	ome	TER													

							ВО	RING LO	<u>og</u>	P	age _	4	of	
PRO	JECT	NAMI	E: (Chas	· Nau	7/	iomo ley	BORING	NUM	BER:CNC 3	MW-	16.	HU D -	(m)
₽RO	JECT	MUM	BER:	N	0164	(2)	ond CXI	MANDATE:	CIST.	6/21/99 Mark Dam	- /-			-
ĎRIL	LING	RIG:	FAINT.	8-61	m Do	i je	wq	GEOLO	G131. R:	Damed Mar	iggu Lu			
Sample	Depth	Blows /	Sample	Lithology	V	IATE	RIAL DESC	RIPTION	U		PID/7	ID Re	eding ((ppm)
No. and Type or	(FL)	6" or RQD (%)	Recovery / Sample	1	Soil at Density! Consistenc				S	Remarks	2	A.V.	10	1
RQD	No.	(, ,	Length	or Screened Interval	y or Rock Hardness	Color	Maleia			, , , , , , , , , , , , , , , , , , ,	Mr.Sami	Semple	:NET S	E BIIILE
0	0		<u> </u>		ing at the parameter		No 55							
Ť	Ĭ	X	1		l <u>*-</u>		collecte	Samples 6. Querge	_			H		\dashv
		X	\perp				bosaun	si'lly sand	,	Storeng Perfox. C be love -10'	864			
<u> </u>	¥		igsqcup					on, w souted	- 	belong -10'	200	0		의
 - -	19	$\langle - \rangle$	200	118	l.		moist-g			11 ((-		
┞┸╌	19		241	`		ve-	clay-		+-	No person	MYO.	0	10	위
 				1	gwr4		CO NESOU	ed hash.	n.T.		\dashv	┝	\vdash	
	-			1			gantsh	WI MASH,			\dashv	-	H	\dashv
<u> </u>	21			 					+	-	+	+		
'		\geq					Term.	Desth 20	,'					
		/	ļ				7 0				_	<u> </u>	Ļ	
						<u> </u>	Swrige	(asing	<u>507</u>	60 20 1 615.		╀	┝┤	Н
	<u> </u>			1		<u>.</u>	·		-		+	╁		H
	-			1 ·				-		_				
			-] .										
<u> </u>		/		ļ									<u> </u>	Ц
		/							_			1	<u> </u>	Ц
	_	/		}	<u> </u>	-	·		\dashv			╀	 	\dashv
\vdash				-						 		╁		┝┥
<u> </u>	\vdash			-					-	-	_	+	-	$\vdash \vdash$
\vdash	-		-	}	 		 		+			+	┼┈	$oldsymbol{+} oldsymbol{+}$
\vdash			-	1	<u> </u>	\vdash			+	-	-	+	╁╴	ootnotesize
		coring, ent			<u> </u>						rilline	 Δ ::::::		لــــــــــــــــــــــــــــــــــــــ
	nde moi narks:		ng in 6 fo	ol intervals	@ borehole	e. Incre	ease reading free	quency if elevated r	eponse r	Backgro	dilling (p			-0
Con	verte	d to W	oli-	Yes	• /		No	Wel	IID #	CAP 3/- M				

BORING LO

Page ___ of __

	_	NAM	_		ENC S	ite 2	9 Bldg NH46	BORING N	IUME	BER: (NC 29)	<u>- MW</u>	ODD	. (AB
		NUM		<u> </u>	<u>nc a</u>	<u> </u>	NDIM, J	DATE:		7/2/99			
			PANY:	<u></u>	Note	Dri	HIAG	GEOLOGI	ST: _		<u>/</u>		
DRIL	LING	RIG:				-		DRILLER:		Red			
_					ħ	NATE	RIAL DESCRIP	TION			PID/FID	Reading	(ppm)
Sample		Blows /	Sample	Lithology	Soit				υ				
No. and	(FL) or	6° or RQD	Recovery	Change (Depth/Ft					S			剝欄	
ype or	I .	(%)	Sample	j j	Consistent y				c	Remarks			200
RQD	No.		Length	or Screened	a or a	Color			S •				
				Interval	Rock Hardn ess								
*/	28	36			Film	div	tar 24 0/	ive			1 1		
	Ť	1/	1.79/2	1		\vdash	Silty sand v	Famil	[+	+	
		/ •	74				well sorted	42 Jana 2	K.	/			\vdash
		3			5+F4	((o matte)	live clay	l "		11		
	30	41]		T	COMOS. DE FIL	in wing	ГП		$\top \top$	\Box	
	00	- •		ł		+	bone short	Tray MEATS	┼─┤		┿	+	H
		_				ļ	we i .				\bot		
ح	3℃	9/		ļ	SOFT	tre	مأدى مواء	Line with				1 1	
٠		8.	2/2			DIT-C	shell fragen	ents thou	ha	<i>ज</i> ,	+	+	\square
		96	14	ļ		 	1364.	•	 		+		—
		6/6								•	11		
	32	51		١	1040	m 6	Cita ata		\Box		\top		
	7	/ "			}	 	film gley	1 30/4 e	{ }		┿		H
					<u> </u>	<u>L</u> .	Wet.	हु॥ उठ्याप स			<u>i i</u>	ii	Li.
**	32	14/2			1006"		film grey s]	· · ·			
		_	٧2			1540	med grain de	14201 AC	1		+	 	
		7 6	7~		a 441.		we+ 1050	skell	┦┈┦		++		├ ─┤∙
		16			Petron	ln t	Olastic el	y clay thesite.	1 1				
	34	11/2					very firm	with so me	1		\top		
	-					├	0.0 ppm	10160 T3	 	-	╅	┿	Н
		<u> </u>					L		 _ 	<u> </u>	$\bot \bot$		Ш
4	34	136			+6451	<u></u>	olive clay	Plustic			11		ll
		14/6	2/2		740.		some shell	Freemen	13			 	
		9	7 ~	-	407-100	1.7	30		\vdash		┵┵	 -	├ ┩
		136			film	1	sand with	alot of					
	36	9/					shell fragm	ents, oliv	¢.		TT	\top	П
	-	/ 6	<u> </u>			 	wet por	akes and e	mail	aka pluste		+	+
	<u> </u>	4		l		<u> </u>			V	phosphute rock	ightharpoonup		<u> </u>
5	36	0/0			Moderat	414	Sand Shell he	gh		•			
	~~	0/6	1/5	1		 	wet ,		\top	•	$\dashv \dashv$	+	
	ļ		<u>/2</u>			┿	1		┨		$\dashv \dashv$		+
	<u> </u>	96			<u> </u>	L			\perp				
	38	11/6			bottom	3"	chesive me	rm, plustic					
	<i></i>	۲÷	 	İ		+	rongelve me	HET TOWAT	╁	<u> </u>	╅	┯	┼┤
						<u> </u>	<u> </u>						
		•	er rock bro				•				 IU 4		
			ng in 6 foo	t intervals	6 potehok	e. Incre	ease reading frequency	if elevated repor	nse rea		lling An		
.em	arks:									Backgrou	ia (ppn	n):∟_	
Onv	verted	to We	ell:	Yes			No	Well i.l	D. #:				
						_							

BORING NO.: CNC29-MWO.

PROJECT CN	16 Site	.29	LOCATION	CNC29-MWOI	DRILLER Roc	/
	421011		BORING	CNC29-MWOI	METHOD: DPT	
ELEVATION			DATE	6/15/29	DRILLING HSA	
FIELD GEOLOGIST	Mertu	Ruu	-		DEVELOPMENT: NA	
	7	7				
						}
	\Box			ELEVATION OF TOP OF S		
				ELEVATION OF TOP OF R		
	7	┐ ╎⋖ ┈	Ł	STICK-UP TOP OF SURF	ACE CASING:	
,		4		STICK-UP RISER PIPE:	_ */ ·	
				I.D. OF SURFACE CASING		}
		11		TYPE OF SURFACE CASI	NG: 3CH 40 PVC	<u> </u>
GROUND Y			<u> </u>	TYPE OF SURFACE SEAL	: concrete.	-
ELEVATION						
					- #	
		700		RISER PIPE I.D.:	- 1 - 1 - 10C	
				TYPE OF RISER PIPE:	sch 40 pvc	\
			·	BOREHOLE DIAMETER:		- ,
.				TYPE OF SEAL: GTO	- 30/65 unds	rgrout
		*				
				ELEVATION / DEPTH OF	CCAI,	3',0"
	unus:				765	. —
				THE COURT SE	703	-
	\$773					
	\$ 3			DEPTH TOP OF SAND PA		1
				ELEVATION / DEPTH TOP	OF SCREEN:	48111
				mor of conden	al un ou	C
				TYPE OF SCREEN:	sch 40 pu	-
				SLOT SIZE X LENGTH:	10 slot	
						
				I.D. OF SCREEN:	2"	
				TYPE OF SAND PACK:	20/36	
						
			1			
			İ			
						11
		4		-ELEVATION / DEPTHBOT	TOM OF SCREEN:	16,0"
		Salle		ELEVATION / DEPTH BO	TTOM OF SAND PACK:	1610"
				TYPE OF BACKFILL BELL		
				WELL: 20	* 	- 1676
<u> </u>				ELEVATION / DEPTH OF	HOLE:	16/0

BORING NO.: CNCR1-MWOZ

PROJECT CA	16 Site 29	LOCATIO	N: CNC24-MWUZ	DRILLER Rod	
PROJECT NO.	NO164	BORING	CNC29-MWOZ	METHOD: DPT-	
ELEVATION		DATE	6/15/27	DRILLING HSH	
FIELD GEOLOGIȘT	Marty Ray	_		DEVELOPMENT: NA	
					
			ELEVATION OF TOP OF S		
			- ELEVATION OF TOP OF R		
			- STICK -UP TOP OF SURFA	ACE CASING:	
. •			- STICK-UP RISER PIPE:	211	
	· II II⊸		-I.D. OF SURFACE CASING		-
			TYPE OF SURFACE CASIN	G. Jingo Pic	
GROUND \			TYPE OF SURFACE SEAL	grout to 10'	الماد
1 I #				- 3.001 10 10	ا د.ن
ELEVATION		#		-4	•
			- RISER PIPE I.D.:		
			TYPE OF RISER PIPE:	sch 40 PVC	
					•
			BOREHOLE DIAMETER:		_
		- -	- TYPE OF SEAL: 30	45 sand	. [
			<u></u>		-
]. 🔺		.	•		310
7 6.5. 20/36			_ ELEVATION / DEPTH OF S TYPE OS SEAL: 3 (SEAL:	3/0
7 6.5 20/36			- TYPE OS SEAL: 3	7/83	-
					-
1 Drum			DEPTH TOP OF SAND PA	CK.	
			DEFINIOR OF SANDEA	CIC .	1 11
			_ ELEVATION / DEPTH TOP	OF SCREEN:	6/6"
				I was Aug	
	4		-TYPE OF SCREEN:	sch 40 pvc	_
			SLOT SIZE X LENGTH:	10 slot	_
				2 ^{II} .	
			I.D. OF SCREEN:		_
			TYPE OF SAND PACK:	20/30 Sqn	
					-
				`	-
		ľ			
		i			
			- ELEVATION / DEPTHBOT		/
	-		- ELEVATION / DEPTH BOT		16/6"
			TYPE OF BACKFILL BELC		
				30 sand	1616"
			ELEVATION / DEPTH OF	HOLE:	16/8

BORING NO .: CNC29-MW-03

PROJECT CA	NC Site 29	LOCATIO	N: CNB29-MW03	DRILLER	
PROJECT NO.	NO164	BORING	CNURY-MWO3	METHOD: DPT-#	/
ELEVATION		DATE	6/15/99	DRILLING HSA	
FIELD GEOLOGIST	Marty Ray	-		DEVELOPMENT: NA	
	' /	, ,			
					
		İ	ELEVATION OF TOP OF S		
	7 7 5 −		— ELEVATION OF TOP OF F		
			- STICK -UP TOP OF SURF	ACE CASING:	
			- STICK-UP RISER PIPE:	الاه	
	│ │ │ │ │		-I.D. OF SURFACE CASING	J. 9	,
			TYPE OF SURFACE CASI	NG: 3 CM 90 FVC	
GROUND V		4	TYPE OF SURFACE SEAL	grout to lot	135
F860				7.00	
ELEVATION				- 11	-
			-RISER PIPE I.D.:	a ⁱⁱ ,	
			TYPE OF RISER PIPE:	2" SCh 40 PVC	:
			BOREHOLE DIAMETER:	··-	•
				out	•
					310"
ł			ELEVATION (DESTINATE	omal.	# A
			_ ELEVATION / DEPTH OF : — TYPE OS SEAL: 3	0765	910
			TIPE OS SEAL.	- 143	-
			DEPTH TOP OF SAND PA		510K
			DEFIN TOP OF SAND PA	NO.	1, 11
	-		_ELEVATION / DEPTH TO	P OF SCREEN:	6/11
			TYPE OF SCREEN:	10 slot gch 4	5 PVC
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		- '
			SLOT SIZE X LENGTH:	in stat	-
			L.D. OF SCREEN:	a"	
		•	I.D. OF SCREEN,		_
				•	,
		<u> </u>	TYPE OF SAND PACK:	20/30 sano	_
					_
		İ			
			ELEVATION (DESTRICT	TON OF CORES!	12 411
			— ELEVATION / DEPTHBOT — ELEVATION / DEPTH BO		167 24
			TYPE OF BACKFILL BELI		10,0
				/30 Sand	
	-		ELEVATION / DEPTH OF	<u> </u>	1616"

PROJECT CNO	Site 29		N: CNC29-MW04	DRILLER Rod	
PROJECT NO.	ND164	BORING	CNC29-MWOY	METHOD: BPT	
ELEVATION		DATE	6/15/99	DRILLING HSA	
FIELD GEOLOGIST	Marty Ray			DEVELOPMENT: NA	
<u> </u>	, J				
			ELEVATION OF TOP OF S	SURFACE CASING	
	9 1		- ELEVATION OF TOP OF F	_	
	/ I I <u>-</u> _		- STICK -UP TOP OF SURF		
			- STICK-UP RISER PIPE:		
, •	II II₄		-I.D. OF SURFACE CASING	s 2"	
			TYPE OF SURFACE CASI		OVC
\ \\	_				-
GROUND Y			– TYPE OF SURFACE SEAL	: concrete	-
ELEVATION				••	
			-RISER PIPE 1.D.:	2"	-
			TYPE OF RISER PIPE:	sch 40 pvc	-
			- BOREHOLE DIAMETER:		-
			TYPE OF SEAL: 9 60	Д .	- -
					-
,			_ ELEVATION / DEPTH OF :	SEAL:	310"
			TYPE OS SEAL: 30	165 undergroot	
				•	-
			DEPTH TOP OF SAND PA	ACK:	
	-		_ELEVATION / DEPTH TOP	OF SCREEN:	611
	4		- TYPE OF SCREEN:	sch 40 prc	_
			SLOT SIZE X LENGTH:	10 Slot	_
		!	I.D. OF SCREEN:	211	_
			TYPE OF SAND PACK:	20/36	_
					-
			— ELEVATION / DEPTHBOT	TTOM OF SCREEN	16/1"
			- ELEVATION / DEPTH BO		167 6"
			TYPE OF BACKFILL BELO	OW OBSERVATION	
			WELL: 20/3	10	_ <i>}</i> . <i>H</i>
			ELEVATION / DEPTH OF	HOLE:	1616"

PROJECT CNC Site 29	LOCATION	: CNC29-MWOS		
PROJECT NO. NOIG4	BORING	CNC-29-MW05	METHOD: BPT	
ELEVATION	DATE	6/15/99	DRILLING HSA	
FIELD GEOLOGIST MONY KAY	<u> </u>		DEVELOPMENT: NA	
	· · · <u> </u>		•	
		ELEVATION OF TOP OF S	URFACE CASING:	
<u>-</u> 54 4	<u> </u>	ELEVATION OF TOP OF R	-	
	7	STICK-UP TOP OF SURFA	-	
	<u> </u>	STICK-UP RISER PIPE:	-	
	4	I.D. OF SURFACE CASING	: 7″ -	
		TYPE OF SURFACE CASI	NG: Sch 40 PUC	
GROUND V	-	TYPE OF SURFACE SEAL	concrete	
ELEVATION	- ` [لر	· · · · · · · · · · · · · · · · · · ·		
		RISER PIPE I.D.:	24	
		TYPE OF RISER PIPE:	sch 40 prc	
		BOREHOLE DIAMETER:		
		TYPE OF SEAL:	Ut to 10" 665	
	-			, .
		ELEVATION / DEPTH OF S	SEAL:	2/10"
			0/65	
	•			
	 	DEPTH TOP OF SAND PA	ск:	
	[ELEVATION / DEPTH TOF	OF SCREEN:	5101
	•	;	**	
· · ·		TYPE OF SCREEN:	sch 40 PVC	
		SLOT SIZE X LENGTH:	sch 40 PVC	
		I.D. OF SCREEN:	2".	
			,	
		TYPE OF SAND PACK	_ 70/30	
		ELEVATION / DEDTUROT	TON OF COREEN	16,00
		- ELEVATION / DEPTHBOT - ELEVATION / DEPTH BO	•	1615"
		TYPE OF BACKFILL BELO		<u> </u>
		WELL: 20/3		1618"
	—	ELEVATION / DEPTH OF	HOLE:	/6/3

BORING NO.: CNC29- MW 06

(00201 <u>E76 C 5172 E</u>		RILLER _ Rod_	
ROJECT CNC Site 29 LOCAROJECT NO. CNC NO164 BOR	NG CNC 29-MWO6 M	ETHOD: DPT	
_EVATION DATE	6/15/99 DI	rilling <i>HSA</i>	
ELD GEOLOGIST Merty Ray	DI	EVELOPMENT: NA	
	ELEVATION OF TOP OF SUR		
	ELEVATION OF TOP OF RISE		
	STICK -UP TOP OF SURFACE	E CASING;	
	STICK-UP RISER PIPE:	2 M	
	I.D. OF SURFACE CASING:	- 	
	TYPE OF SURFACE CASING	Jan 40 pue	
GROUND V	TYPE OF SURFACE SEAL:	concrete	•
ELEVATION			
ELEVATION		211	
	RISER PIPE I.D.:	sch 40 pvc	•
	TYPE OF RISER PIPE:	sen yo mic	,
	BOREHOLE DIAMETER:		•
	TYPE OF SEAL:	t to 1011	•
		, (0	2/2//
			d, /
	ELEVATION / DEPTH OF SEA		
	TYPE OS SEAL: 30/65	<u> </u>	
	DEPTH TOP OF SAND PACK	: ,	5'0"
	ELEVATION / DEPTH TOP O	F SCREEN:	611"
	TYPE OF SCREEN:	sch 40 PVC	
	SLOT SIZE X LENGTH:	10 5/01	
	I.D. OF SCREEN:	27.	
		. /	
	TYPE OF SAND PACK:	20/30 sand	-
	-		-
	ELEVATION / DEPTHBOTTO	M OF SCREEN	1611"
>	ELEVATION / DEPTH BOTTO		16/17
100 Carlo Ca			70.7
	I THE CIP MACREILL MELLING		
	TYPE OF BACKFILL BELOW WELL: 20/3		1617"

		-
BORING	NO.:	

PROJECT CNC Site 29 LO	OCATION	V: CNCZ9-MWO7D	DRILLER Custom	Drilling
PROJECT NO. CNC 29 NOI64 B	ORING	CNC29-MWO7D	METHOD: DPT	,
ELEVATIOND	ATE	7/2/99	DRILLING Mud K	Aovery
FIELD GEOLOGIST Marty Ray			DEVELOPMENT: NA	
	_	•		A . 1
		ELEVATION OF TOP OF S		Flugh
		ELEVATION OF TOP OF R		
■ -	 	- STICK -UP TOP OF SURFA		
	 	- STICK-UP RISER PIPE:	: 6 ¹¹	
		-I.D. OF SURFACE CASING		r
		20' 615	ng: 5ch 46 pvc	<u> </u>
	} .	TYPE OF SURFACE SEAL	: concrete Pad	-
GROUND	7	2'x 2' x 6"	. CONCVETE DAM	-
ELEVATION	İ	27070		-
		- RISER PIPE 1.D.:	2 "	
		TYPE OF RISER PIPE:	Sch 40 PVC	-
			<u> </u>	- .
	-	BOREHOLE DIAMETER:	5 1/8"	_
	 	TYPE OF SEAL: 4/6	ut to 8" 615	-
6"oster (a)		 		3/2//
6" outer casing set to 20' bis	ļ			- 31,8"
	<u> </u>	ELEVATION / DEPTH OF	SEAL: /	3146
│	_	TYPE OS SEAL: 30/6	s sand	_
				- 35/9//
				32/_//
		DEPTH TOP OF SAND PA	CK:	33
		_ELEVATION / DEPTH TOP	05 660554	35,0"
		_ELEVATION / DEPTH TOP	OF SCREEN.	
		-TYPE OF SCREEN:	sch 40 PVC	
		, <u>- 5.</u> - 5		-
		SLOT SIZE X LENGTH:	10 slot x 5'	
				_
		I.D. OF SCREEN:	2 ¹¹ .	
				_
			,	
			/	
		TYPE OF SAND PACK:	20/30 sand	_
				
		- ELEVATION / DEPTHBOT	TOM OF SOREEN	45'10"
>\rightarrow\rightarro		- ELEVATION / DEPTH BOT		4110
		TYPE OF BACKFILL BELC		
		WELL: 20/30	Sand	4000
─		ELEVATION / DEPTH OF		-45°0"

DEC FOT C C	. 10.	29 (NH46)	/ 1
PROJECT Chas.A	ava Complex LOC	ATION:5, Le # /Zonec DRILLER Custom Drill	ing
PROJECT NO.		RING CNCM - MUGG D METHOD: HSA-	•
ELEVATION	DAT		
FIELD GEOLOGIST	Mark Davington	DEVELOPMENT;	
Soning Methods	Surface Cosine: HSAB	-25 /Sanor Coning)	
<u> </u>		•	
		ELEVATION OF TOP OF SURFACE CASING:	
	→	ELEVATION OF TOP OF RISER PIPE:	
		——— STICK -UP TOP OF SURFACE CASING:	5h
	[┻]	STICK-UP TOP OF SURFACE CASING: STICK-UP RISER PIPE:	54
Type of Surface (Asplatt)		I.D. OF SURFACE CASING: 8" IDX 10" OD	
1/1014		TYPE OF SURFACE CASING: Steel COVERWITH	
Maphacei		Bott-on lid (Flush) (PEMCO)	
GROUND V		TYPE OF SURFACE SEAL: Concrete Pad	
1/6		(Quickcrole) 2Hx 2Hx 6 in.	
ELEVATION			
_ 		—— RISER PIPE I.D.: 2-1'4.	
5		TYPE OF RISER PIPE: PUC, Sch. 40, Flosh Throng	1
_ `			5-15
[]		BOREHOLE DIAMETER:	,
1 1		TYPE OF SEAL:	
<i> </i>		Borehole Die. 12.25 -in	
(.		Type of S.C. Seal Bortland Coment Type I	
1 1		ELEVATION / DEPTH OF SEAL:	į
 		TYPE OS SEAL:	
1		Josth of 5.C.	20
- 4		<u> </u>	
		DEPTH TOP OF SAND PACK:	
		DEFINIOF OF SAND FACE.	
		ELEVATION / DEPTH TOP OF SCREEN:	,
	00000		
	<u> </u>	•	
		TYPE OF SCREEN:	
	*13 1 3 3		
1		SLOT SIZE X LENGTH:	
()		SCOT SEE X LENGTH.	
- FIDIPPM)		ID of scheen.	
1		I.D. OF SCREEN:	
Jalla 400			
400			
- BKarnd = "			
FID(ppm) Installation Bkarnd = 0.0 Oriller B.2.=0 Intole = 0.0). V	TYPE OF SAND PACK:	
DVILLE V	2		
to Hole =0.0			
+""	550		
1			
	F		
νn		•	
JUIVING 950i	ani ani	ELEVATION / DEPTHBOTTOM OF SCREEN:	1
C. Hinar		ELEVATION / DEPTH BOTTOM OF SAND PACK:	/
しょれがやり, .	X	TYPE OF BACKFILL BELOW OBSERVATION	
, Jour, 1, 1			
263) Drums 2501 Cattings.		WELL:	

APPENDIX C FIELD SAMPLING DATA SHEETS

GROUNDWATER SAMPLE LOG SHEET

Project Site Name:	COIC	ء مذ	- Black	NIH(IIa	Sample	iD No.:	29G0	of no6\$/
Project No.:	NOIL) +e 29	Zone	NHUE		Location:	1MC29	Ιηφοφή
[] Domestic Well Data[] Monitoring Well Data[] Other Well Type:[] QA Sample Type:					C.O.C. I Type of [] Low			
SAMPLING DATA:								
Date: 8 7 95	Color	pH	s.c.	Temp.	Turbidity	DO	Salinity	Other
Time: 1510	Visual	Standard		Degrees C	NTU	mg/l	%	NA.
Method: PURGE DATA:	L	5.95	्०४६	27.5	6	1.87		<u> </u>
	l values			T (0)	Touch I did a		Call-it.	
	Volume	pH	s.c.	Temp. (C)	Turbidity	2 57	Salinity	Other
Method:	Initiai	6.15	:093	28.7	16	2.57		
Monitor Reading (ppm):	1	5.97	.087		6	1.65		-
Well Casing Diameter & Material	2	5.97	_		8	191		
Type:	- 3 -	5.95	.086	27.5	6	1.87		
Total Well Depth (TD): 16.37	ļ <u>.</u>	ļ						<u> </u>
Static Water Level (WL): 9.67		ļ <u>.</u>						
One Casing Volume(gal/L): .		ļ						
Start Purge (hrs): 1406								ļ
End Purge (hrs):				, <u></u>				
Fotal Purge Time (min):						,		
Total Vol. Purged (gal/L):								
SAMPLE COLLECTION INFORMA	TION:							
Analysis		Presen	vative		Container R	equirements		Collected
815×/E0B	·	H		Z×	3 X	40m	/	
		 			· •			ļ
PAH		 			2	/ Hr.		
V H It				1 ×		iir.		
		1						
		 		<u> </u>				 -
				1.	<u> </u>			
				h m	SINSI	O tu	ke.	
			*	h m	S/MSJ) ku	ker	
			*	h me	SIMSI) Ku	ker	
			*	h M	S/MSJ) fu	kes .	
DBSERVATIONS / NOTES:			*	h me	S/MSJ) Ku	ker_	
OBSERVATIONS / NOTES:	3 7 5 1 7 Ø	6.3	76 x	. 16	=1.	1 2-	ker -	
(8.13	37 67 70	6.7	76 x	. 16	Signature(s		1	

weather Clear, hot, expected by 5h Parsonnal: Jeff Alexander equip: per contraporp, the iba 0745 Arrive on site - set-up for 3800 Free product (81") found in Mus 0809 an Beyin purging one vot. Ph Cond Initial 602 15+ vs(. | \$.73 1081 2nd vol. 5.78 .064 24.5 3rd vol. 5.8 % .061 Initial 7.49 246 Temp Turbiaity 34.8 25.0 1-62 154 001 7.90 .228 2nd val. 8.09 .227 . 85 246 3rd vol. 8 15 1955 End purge mw3. P10 Sampled MW-3 # 2954 M9301 1245 Samphel Mil-7 & Dupal 14 - No. 2964 MØ 701 296LMØ78IM

	7-26-59		i Tilitaria	
watherocl	: 	F96° Heat	1 malex 100	
Personel 1 6				
Bound 0680	e sive s	take prepa	crein to pu	re somple
2 How				
0842 248Y		195 Vo=16:		
- 10 17		Temp.	Turbid	D.O.
Init 5.35	~08. <u>8</u>	26.2	Ø	2.46
151-0,55	967	<i>€</i> ₩€€€€		-/-90
2nd 5:65	5-65-068	27.4	Ø	2.91
3th.				
			17	
08/19 Stock		WL=967	1/0=16.37 Turbich	1001.21.15al.
*	\$,C.	as &	Ø	246-193
In Sag			Ø	3-00
2nd. 5.67	_038	-067-27.4 27.7	Ø	1.72
	-080			
31hu		377.7		
31hu			T/0×/6251	
	el MM=2	ω/ _L = 10.66	T/0=/625/1	∞ . >/. O
3thu 0850 Start	EL MW-2 5.C.	ω/ _L = 10.66 Temp	T/0=/625/1	10 - 20 - 20 - 20 - 20 - 20 - 20 - 20 -
3thu 0850 Start Ph Init 5.15	5.C. 5.C.	ω/ _L = 10.66 Temp 25.5	Turbiel Ø	10 3:56
3thu 0850 Start DAT 5.15	5.C. 5.C. - 098 - 064	ω/ _L =18.66 Temp 25.5 26.0	1-0	0 . >/. O DO 3:56 3:60
3thu 0850 Start Ph Init 5.15	5.C. 5.C. - ,098 1 ,064	ω/ _L = 10.66 Temp 25.5	Turbiel Ø	10 3:56
3thu 0850 Start DAT 5.15	5.C. 5.C. - 098 - 064	ω/ _L =18.66 Temp 25.5 26.0	Turbiel Ø	0 . >/. O DO 3:56 3:60
3thu 0850 Start DAT 5.15	5.C. 5.C. - 098 - 064	ω/ _L =18.66 Temp 25.5 26.0	Turbiel Ø	0 . >/. O DO 3:56 3:60
3thu 0850 Start 20850 Start 201 5.05 201 5.05 374.	62 MW-2 5.6. .098 .064 .064	ω/ _L = 10.66 — Temp — 35.5 — 26.0 – 26.8	Timbol Ø Ø	2.92
3thu 0850 Start DAT 5.15	62 MW-2 5.6. .098 .064 .064	ω/ _L = 10.66 — Temp — 35.5 — 26.0 – 26.8	Timbol Ø Ø	0 . >/. O DO 3:56 3:60
3thu 0850 Start 20850 Start 201 5.05 201 5.05 374.	62 MW-2 5.6. .098 .064 .064	ω/ _L = 10.66 — Temp — 35.5 — 26.0 – 26.8	Timbol Ø Ø	2.92
3thu 0850 Start 20850 Start 201 5.05 201 5.05 374.	62 MW-2 5.6. .098 .064 .064	ω/ _L = 10.66 — Temp — 35.5 — 26.0 – 26.8	Timbol Ø Ø	2.92
3thu 0850 Start 20850 Start 201 5.05 201 5.05 374.	62 MW-2 5.6. .098 .064 .064	ω/ _L = 10.66 — Temp — 35.5 — 26.0 – 26.8	Timbol Ø Ø	2.92

17 F. F.

10

FIELD ANALYTICAL LOG SHEET GEOCHEMICAL PARAMETERS

Tetra Tech NUS, I	nc.							Page of _	
								 nadi 2 di 1	
	Name: CNC _4			-			o.: 29GL1		_
Project No.:		<u>Bldg r</u>	<u> 4446</u>	-			tion: CMC	29mWØ3	<u>'</u> — [
Sampled By:				-		Duplicate:			
Field Analyst	_			-		Blank:			
	checked as per C				X				<u>.</u>
SAMPLING DATE									
Date:	2799	Color	Phop		Temp.	Turbidity	DO	Sal.	pН
Time:		(Visual)	(+/- mv)	(mS/cm)	(°C)	(NTU)	(Meter, mg/l)	(%)	(SU)
Method:		41888	5.80	.૦૯ ١	26.6	Ø	2.61		
NAMES OF TAXABLE PARTY OF TAXABLE PARTY OF TAXABLE PARTY OF TAXABLE PARTY.	CTION/ANALYSIS II	NFORMATION	t erri						
Dissolved Ox	ygen:			1	<u>.</u>				j
Equipment:	HACH Digital Titrato	or OX-D T	CHEMetric	s (Range: <u>/</u>	/ <i>-/•</i> / _{mg/L)}		Analysis Time:	4925	-
Range Used:	Range	Sample Vol.	Cartridge	Multiplier	1	Titration Count	Multiplier	Concentration	
	1-5 mg/L	200 ml	0.200 N	0.01			x 0.01	= mg/L	1
	2-10 mg/L	100 ml	0.200 N	0.02			x 0.02	= mg/L	1
CHEMetrics:	2_mg/L								'
Notes:									·
Alkalinity:							Analysis Time:		
_	HACH Digital Titrato	тС-JA к	CHE Metric	⇔s (Range: _	mg/L)	ı	Filtered;		
Range Used:	Range	Sample Vol.	Cartridge	Multiplier	Titra	ation Count	Multiplier	Concentration	1
X	10-40 mg/L	100 ml	0.1600 N	0,1	_	8 /6¢	x 0.1	= /6 mg/L	1
	40-160 mg/L	25 ml	0.1600 N	0.4		&	x 0.4	= mg/L	1
	100-400 mg/L	100 ml	1.600 N	1.0		8.	x 1.0	= mg/L	1
	200-800 mg/L	50 ml	1.600 N	2.0		8	x 2.0	= mg/L	1
	500-2000 mg/L	20 ml	1.600 N	5.0		8.	x 5.0	= mg/L	1 [
 	1000-4000 mg/L	10 mi	1.600 N	10.0		&	x 10.0	= mg/L	1
	Too Too Too Too		7,000,0	10.5					' [
,	Parameter:	Hydroxide	Cart	onate	Bk	carbonate	7		
· '	Relationship:	Ø	02			16	1		
CHEMetrics:	mg/L				· ·	-	_	•	
Notes: Standard Additions	Titrer	nt Molarity:		Dialte Rea	uired: 1st.:	2nd.:	3rd.:		
		I IVIORALITY		Difins 1 red	ulleu. 15t.,	4IM.,	014		
Carbon Dioxi Equipment:	ICIE: HACH Digital Titrato	or CA-DT	CHEMetric	cs (Range: _	mg/L))	Analysis Time:	<i>φ942</i>	~
Range Used:	Range	Sample Vol.	Cartridge	Multiplier	1	Titration Count	T	Concentration	7
The state of	10-50 mg/L	200 ml	0.3636 N	0.1	1	2000	∕~ x 0.1	= 20.5 mg/L	1
	20-100 mg/L	100 ml	0.3636 N		1	205	x 0.2	= 41 mg/L	7
	100-400 mg/L	200 ml	3.636 N	1,0	1		x 1.0	= mg/L	1
	200-1000 mg/L	100 ml	3,636 N	2.0	1	 -	x 2.0	= mg/L	1
CHEMetrics:	mg/L			<u> </u>	4				
Notes:									
Standard Additions		nt Molarity:		Digits Rec	puired: 1st.:	2nd,:	3rd.:		_
Uter recie a creeres		* I		₽ ₩100 - 1-7	MII DA. 1 C				

Tetra Tech NUS, Inc.

FIELD ANALYTICAL LOG SHEET GEOCHEMICAL PARAMETERS

7-2795

Page of

l .					•			ŀ
Project Site Nar	me: CN	c29			Sample ID N	lo.: 29	GFM43g	Ø/
Project No.: N	10164						CNC29ML	
Sampled By:			·		Duplicate:			
Field Analyst:					_Blank:			
Field Form Che				A				
SAMPLECOLLECTH	ONANALYSISII	VFORMATION:						
Sulfide (S²):							,	
Equipment: DR	R-700	DR-8 <u>40</u> н	S-C Color Chart	HS-WR Col	or Wheel	Analysis Time	e: <u>4955</u>	_
Program/Module: 610	0nm	93		Other:		_		
I					_ _			
Concentration:	φ.φι	mg/L				Filtered:		
Notes:								_
Sulfate (S0 ₄ ²):								
-	₹-700	DR-84_	Other:		_	Analysis Time	e:	_
Program/Module:		91	_		=	-		
Concentration:		mg/L				Filtered:		
<u> </u>		•						
Standard Solution:		Results:						
Standard Additions:		_	0.1ml: 0.	2ml:_	_0.3mi:			
Notes:		. , , , , , , , , , , , , , , , , , , ,						
Nitrite (NO ₂ '-N):						Analysis Tim	e: /	1029
		DR-8 <u>4</u> ∮	Other:			Filtered:	- W	
Program/Module:		60			_			
~		mg/L			Reagen	it Blank Correction	on: 🔲	
<u> </u>	,				Standard Solution			
 Notes:					James a Columbi	eau		
								_
Nitrate (NO ₃ '-N):						Analysis Tim	<u> </u>	
' ' '	• R-700 —	DR-8	Other:			Filtered:		
Program/Module:		55			_	Filtered;		
			_					
Concentration:		mg/L			Attain ba	lames T		
Oten demand of the		. "				ference Treatme		
Standard Solution:		Results: _	04.1			nt Blank Correcti	ion; 🗀	
Standard Additions:		Digits Required:	: 0.1ml:0).2ml:	_ 0.3ml:	-		
Notes:								

FIELD ANALYTICAL LOG SHEET **GEOCHEMICAL PARAMETERS**

Page __ of __

Tetra Tech NUS, Inc) .					P	age of
							<u> </u>
Project Site Na		5ite 29			Sample ID No.:		,
Project No.:					Sample Location	ا: کب ر	29MU3
Sampled By:					Duplicate:	<u> </u>	
Field Analyst:					ຸBlank: ∟	j	
			ecklist (initials):			8588	
		NEORMANIE					
Manganese (M	n-`):						((2)
, ,	R-700		HACH MN-5	Other:	Ar	nalysis Time:	(\$ 3 3
Program/Module: 5		41				_	_
Concentration:	0.2	_mg/L				Filtered:	
						Digestion:	
Standard Solution:			<u> </u>		_	nk Correction: L	J
Standard Additions:		Digits Require	ed: 0.1ml; 0.	2ml:	_0.3ml;		
Notes:							
	24						
Ferrous Iron (F	Fe² ⁺ }:	o 1					1
	R-700	DR-89Ø	IR-18C Color Wheel	Other:	Aı	nalysis Time:	1425
Program/Module: 5		33				_	_
Concentration:	<u>\$.\$1</u>	mg/L				Filtered:	
Notes:			_				
				-			
Hydrogen Sulf	ide (H ₂ S):						
Equipment: H	IS-C	Other:		_	Aı	natysis Time: _	
Concentration:		_mg/L	Exceeded 5.0 mg/L n	ange on color	chart:		
Notes:							
			_				
QA/QC Checkli		_					
All data fields hav				_	,		
			AMPLING DATA 6	lock: L	J		
Mulitplication is c	correct for each	<i>Multiplier</i> tab	ole: 🔲				
•			propriate Range Us				
Alkalinity Relation	nship is determ	ned appropr	iatly as per manufa	cturer instru	uctions: 니		
QA/QC sample (e.g., Std. Additi	ons, etc.) fre	quency is appropri	ate as per th	ne project planning	documents:	
Nitrite Interferenc	e treatment use	ed for Nitrate	test if Nitrite was o	letected:			
Title block is initia	alized by persor	who perform	med the QA/QC Ck	ecklist:			

FIELD ANALYTICAL LOG SHEET GEOCHEMICAL PARAMETERS

Tetra Tech NUS, I	nc.							Page of _	
									
	Name: CNC S					Sample ID N	o.: 304LM	10/4/ 30 mws	
Project No.:	N0164 E	<u>31da NHI</u>	1 60	,		Sample Loca	tion: <i>(い</i> て	30 mws	<u>-</u>
Sampled By:						Duplicate:			
Field Analyst	:	_				Blank:			
Field Form C	hecked as per (QA/QC Che	cklist (init	tials):	\				
SAMPLINGUATE		Malantink							
Date: 8 22	99	Color	ORP (Eh)	s.c.	Temp.	Turbidity	DO	Sal.	рH
Time:		(Visual)	(+/- mv)	(mS/cm)	(°C)	(NTU)	(Meter, mg/l)	(%)	(SU)
Method:									
SAMPLE COLLE	PITONIANALYSIST	NFORMATION							
Dissolved Ox	ygen:			Ð	-1				
Equipment:	HACH Digital Titrato	or OX-DT	CHEMetric	s (Range: _			Analysis Time:	1544	_
		,			ı				,
Range Used:	Range	Sample Vol.	Cartridge	Multiplier		Titration Count	Multiplier	Concentration	1
<u> </u>	1-5 mg/L	200 ml	0.200 N	0.01			x 0.01	= mg/L]
	2-10 mg/L	100 ml	0.200 N	0.02			x 0.02	= mg/L]
CHEMetrics: 1	<u>√</u> mg/L								_
Notes:					_			11	
Alkalinity:		,					Analysis Time:	14 35	_
Equipment:	HACH Digital Titrate	or AL-DT	CHEMetric	s (Range: _	mg/L)		Fittered:		
				T					7
Range, Used:	Range	Sample Vol.	Cartridge	Multiplier	Titra	tion Count	Multiplier	Concentration	┨
	10-40 mg/L	100 ml	0.1600 N	0.1		8 <u>450</u>	x 0.1	= 45 mg/L	-
	40-160 mg/L	25 ml	0.1600 N	0.4		8/20	x 0.4	= 48 mg/L	4
	100-400 mg/L	100 ml	1.600 N	1.0			x 1.0	= mg/L	┥
- 	200-800 mg/L	50 ml	1.600 N	2.0		8	x 2.0	= mg/L	┨
	500-2000 mg/L	20 mł	1.600 N	5.0			x 5.0	= mg/L	┨
	1000-4000 mg/L	10 ml	1.600 N	10.0		8	<u>x 10.0</u>	= mg/L	_
	Da	Usadensida	Cont	onate	l Bio	arbonate	7		
l	Parameter:	Hydroxide	Carr		48		4		
CHEMetrics:	Relationship: mg/L	<u></u>	<u> </u>		70				
Notes:									
Standard Addition	s: Titrar	nt Molarity:		Digits Reg	uired: 1st.:	2nd.:	3rd.:		-
Carbon Dioxi		morality		Pigito IVed		£114			
Equipment:	HACH Digital Titrat	or CA-DT	CHEMetric	s (Range: _	mg/L))	Analysis Time:	1440	<u> </u>
	Г	Г	Т	1	1		<u> </u>	1	7
Range Used:	Range	Sample Vol.	Cartridge	Multiplier	-	Titration Count		Concentration	_
	10-50 mg/L	200 ml	0.3636 N	0.1		UIN	x 0.1	= mg/L	4
	20-100 mg/L	100 ml	0.3636 N	0.2		440	x 0.2	= 8 8 mg/L	_
$\vdash \vdash \vdash$	100-400 mg/L	200 ml	3.636 N	1.0	-		x 1.0	= mg/L	4
	200-1000 mg/L	100 ml	3.636 N	2.0			<u>x 2.0</u>	= mg/L	
CHEMetrics:	mg/L							,	
Notes:	<u></u>			5					_
Standard Addition	s: II Titran	nt Molarity:		Digits Reg	uired: 1st.:	2nd.:	3rd.:		

FIELD ANALYTICAL LOG SHEET GEOCHEMICAL PARAMETERS

Tetra Tech NUS, Inc.		Page of
Project Site Name: CNC	5ite 30	Sample ID No.: 3ゆらしんめ/ダノ
Project No.: NOI64 E	31dg NH46	Sample Location:
Sampled By:		Duplicate:
Field Analyst:		Blank:
Field Form Checked as per		-
HISTORIAN CONTRACTOR C	INFORMATION:	anter e e e e e e e e e e e e e e e e e e
Sulfide (S²):		16
Equipment: DR-700	DR-890 HS-C Color Chart HS-WR C	Color Wheel Analysis Time:
Program/Module: 610nm	93 Other:	
 		
Concentration: Ø.8 Ø	_mg/L	Filtered:
Notes: "LIMIT" REA	2CHED ON DR890. S	ample v. blue after
d o	NOINED ON DR890. S	•
Sulfate (S0 ₄ ²⁻):	<i>y</i>	
Equipment: DR-700	DR-8 Other:	Analysis Time;
Program/Module:	91	
Concentration:	_mg/L	Filtered:
<u> </u>	_	
Standard Solution:	Results:	
Standard Additions:	Digits Required: 0.1ml: 0.2ml:	0.3ml:
Notes:		
Nitrite (NO ₂ -N):		Analysis Time: //25
Equipment: DR-700	DR-8 Other:	Filtered:
Program/Module:	60	
Concentration: 0.003	mg/L	Reagent Blank Correction:
_ 		Standard Solution: Results:
Notes:		_ ·
Nitrate (NO ₃ ⁻ -N):		Analysis Time:
Equipment: DR-700	DR-8 Other:	Filtered:
Program/Module:	55	
Concentration:		
Concentration,	_mg/L	Nikala Interference Territoria
	S andan	Nitrite Interference Treatment:
Standard Solution:	Results:	Reagent Blank Correction:
Standard Additions:	Digits Required: 0.1ml: 0.2ml:	0.3ml:
Notes:		

Tetra Tech NUS, Inc.

FIELD ANALYTICAL LOG SHEET GEOCHEMICAL PARAMETERS

Page __

of_

Sample ID No.: 349Lmg/0/ Project Site Name: CNC Site 30 Project No.: NDIG4 Sample Location: BIDG NH46 Duplicate: Sampled By: Blank: Field Analyst: Field Form Checked as per QA/QC Checklist (initials): SAMPLE COLLECTION/ANALYSIS INFORMATION: Manganese (Mn²⁺): Analysis Time: 1148 DR-700 DR-8__ Other: Equipment: HACH MN-5 Program/Module: 525nm 41 mg/L Concentration: Digestion: Standard Solution: Reagent Blank Correction; Results: Standard Additions: Digits Required: 0.1ml;_____ 0.2ml;___ 0.3ml: Notes: Ferrous Iron (Fe²⁺): DR-700 Other: Equipment: IR-18C Color Wheel Analysis Time: Program/Module: 500nm 0.21 Concentration: mg/L Hydrogen Sulfide (H₂S): Analysis Time: 150 HS-C Equipment: Other: 5. ¢ Concentration: Exceeded 5.0 mg/L range on color chart: Notes: QA/QC Checklist: All data fields have been completed as necessary: Correct measurement units are cited in the SAMPLING DATA block: Mulitplication is correct for each Multiplier table: Final calulated concentration is within the appropriate Range Used block: Alkalinity Relationship is determined appropriatly as per manufacturer instructions: QA/QC sample (e.g., Std. Additions, etc.) frequency is appropriate as per the project planning documents: Nitrite Interference treatment used for Nitrate test if Nitrite was detected: Title block is initialized by person who performed the QA/QC Ckecklist:

FIELD ANALYTICAL LOG SHEET GEOCHEMICAL PARAMETERS

Tetra Tech NUS, inc.							Page of _		
						_			
Project Site Name: CNC Site 30				Sample ID No	o.: 30GL	M 4501			
Project No.: ND164	Bida r	VH46			Sample Local	tion: しん	:30mu	<u>5</u>	
Sampled By:	J				Duplicate:				
Field Analyst:					Blank:				
Field Form Checked as per	QA/QC Che	cklist (init	ials):	$\bigcirc A$	1	_			
SAMPLING DATA:		•		7					
Date: 8 22 99	Color	ORP (Eh)	s.c.	Temp.	Turbidity	DO	Sal.	рН	
Time:	(Visual)	(+/~ mv)	(mS/cm)	(°C)	(NTU)	(Meter, mg/l)	(%)	(SU)	
Method:	(¥ 15 (Lat)	(+/* IIIV)	(IIIS/CIII)	(C)	(1410)	(ivieter, ing/i)	(70)	(30)	
	INFORMATIO	<u>l</u>							
SAMPLE COLLECTION/ANALYSIS INFORMATION: Dissolved Oxygen:									
Equipment: HACH Digital Titra	tor OY. DT	CHEMetrics	(Bange	/ mg/L)		Analysis Time:	0859		
Equipment. HACH Digital Files	IIO OX-D1	CHEMICA	s (ıvalığıe. —	nig/c/		Alialysis line.	7027		
Range Used: Range	Sample Vol.	Cartridge	Multiplier		Titration Count	Multiplier	Concentration	1	
Range Used: Range	200 ml	0.200 N	0.01		TREADIT COURT	x 0.01	= mg/L	\	
2-10 mg/L	100 ml	0.200 N	0.02			x 0.02	= mg/L	1	
24	100 1111	0,200 (4	0.02			7 0.02	- mg/L		
CHEMetrics: <u>// /</u> mg/L Notes:								-	
						Anatonia Time:	NREA		
Alkalinity:	A AL DT	OUEN-4-	· (D	4 3		Analysis Time:	\$ 0.3 ¢	-	
Equipment: HACH Digital Titra	itor AL-D I	CHEMetric	s (Range: _	mg/L	1	Filtered:			
B	70		h a .ht : - 11			h de allie litera	Concentration	1	
Range Used: Range	Sample Vol.	Cartridge	Multiplier	I Rra	ation Count	Multiplier x 0,1	= 10.5 mg/L	-	
10-40 mg/L	100 ml	0.1600 N	0.1			x 0.4		1	
40-160 mg/L	25 ml	0.1600 N	0.4		8			-	
100-400 mg/L	100 ml	1,600 N	1.0		8	x 1.0	= mg/L	-	
200-800 mg/L	50 ml	1,600 N	2.0			x 2.0	= mg/L		
500-2000 mg/L	20 ml	1.600 N	5.0		&	x 5.0	= mg/L	-	
1000-4000 mg/L	10 ml	1.600 N	10.0		8 8	x 10.0	= mg/L		
	1	1		ı		7			
Parameter:	Hydroxide	 	onate		carbonate	4			
Relationship:	#	1 /2	3	10	. 5				
CHEMetrics:mg/L									
Notes:								_	
Standard Additions: Titra	ant Molarity:		Digits Req	uired: 1st.:	2nd.:	3rd.;			
Carbon Dioxide:							19-1		
Equipment: HACH Digital Titra	ator CA-DT	CHEMetric	s (Range: _	mg/L	.)	Analysis Time:	Ø854	_	
Range Used; Range	Sample Vol.	Cartridge	Multiplier]	Titration Count		Concentration	7	
10-50 mg/L	200 ml	0.3636 N	0.1	1		x 0.1	= mg/L	7	
20-100 mg/L	100 ml	0,3636 N	0.2	1	168	x 0.2	= 33.6 mg/L	7	
100-400 mg/L	200 ml	3,636 N	1,0	1		x 1.0	= mg/L	i	
200-1000 mg/L		3,636 N	2.0	1		x 2.0	= mg/L	7	
CHEMetrics:mg/L				_	L			_	
Notes:									
	ant Molarity:		Digits Rea	uired: 1st.:	2nd.:	3rd.:		_	

Tetra Tech NUS, Inc.

FIELD ANALYTICAL LOG SHEET GEOCHEMICAL PARAMETERS

Page __

of

Sample ID No.: 3094m4501 Project Site Name: CNC 5ite 30 Sample Location: Project No.: NOI64 BIDA NH46 Duplicate: Sampled By: JA JA Field Analyst: Blank: Field Form Checked as per QA/QC Checklist (initials): SAMPLE COLLECTION/ANALYSIS INFORMATION: Sulfide (S²⁻): Analysis Time: Equipment: DR-700 DR-8__ **HS-C Color Chart HS-WR Color Wheel** Program/Module: 610nm 93 Other: Ø.\$1 mg/L Concentration: Filtered: Notes: Sulfate (\$0₄2⁻): Equipment: DR-700 DR-8__ Analysis Time: Program/Module: 91 Concentration: Filtered: mg/L Standard Solution: Results: Standard Additions: Notes: Nitrite (NO₂-N): Analysis Time: DR-8__ Filtered: Equipment: DR-700 Other: Program/Module: 60 Reagent Blank Correction: mg/L Concentration: Standard Solution: Results: Notes: Nitrate (NO₃'-N): Analysis Time: Filtered: Equipment: DR-700 DR-8 Other: Program/Module: 55 Concentration: mg/L Nitrite Interference Treatment: Reagent Blank Correction: Standard Solution: Results: Digits Required: 0.1ml; 0.2ml; 0.3ml; Standard Additions: Notes:

FIELD ANALYTICAL LOG SHEET GEOCHEMICAL PARAMETERS

Tetra Tech NUS, Inc.						Page of
Project Site Name: CNC				Sample ID I		
Project No.: NO164	<u>Blog</u> 1	VH46		Sample Loc	ation:	
Sampled By:				Duplicate:		
Field Analyst:	·			Blank:		
Field Form Checked as p		•		_		
SAMPLEGOLLECTIONANALYS	IS INFORMATI	N: E				
Manganese (Mn²+):						
Equipment: DR-700	DR-8	HACH MN-5	Other:		Analysis Time	: <u>092¢</u>
Program/Module: 525nm	41					 *
Concentration: Ø. Ø	mg/L				Filtered:	
 					Digestion:	
Standard Solution:	Result	s:		Reager	nt Blank Correction	r. 🗖
Standard Additions:		ired: 0.1ml:	0.2ml:	_		
Notes:						
Ferrous Iron (Fe ²⁺):						
Equipment: DR-700	DR-8	IR-18C Color W	heel Other:		Analysis Time	6615
Program/Module: 500nm	33	111-100 0001 11	ileei Olliei,			· <u>/2 7 / 3</u>
l	mg/L				Filtered:	П
					rikeleu.	
Notes:						
Hydrogen Sulfide (H ₂ S):						
Equipment: HS-C	Other:				Analysis Time	•
Equipment. 110-0	Outer,				Analysis time	·
Concentration: D. 6	mg/L	Eveneded 5.0 m	g/L range on color	abadi 🗆		
	my_L	Exceeded 5.0 III	g/L range on color	criant.		•
Notes:						
QA/QC Checklist:		ro⁄				
All data fields have been com		•		2		•
Correct measurement units ar			A DIOCK: L	ت		
Mulitplication is correct for ear	•					
Final calulated concentration i	-			سي ا		
Alkalinity <i>Relationship</i> is dete	mined approp	riatly as per ma	nufacturer instr	uctions:	سك	
QA/QC sample (e.g., Std. Add	litions, etc.) fr	equency is appro	opriate as per tl	he <u>projec</u> t planr	ning documents	: 9
Nitrite Interference treatment	sed for Nitrat	e test if Nitrite w	as detected:			
Title block is initialized by pers	on who perfo	rmed the QA/QC	Ckecklist:			

APPENDIX D

SOIL AND GROUNDWATER LABORATORY ANALYTICAL DATA

SDG NARRATIVE KATAHDIN ANALYTICAL SERVICES TETRA TECH NUS CASE CNC CHARLESTON

Sample Receipt

The following samples were received on June 2, 1999 and were logged in under Katahdin Analytical Services work order number WP2703 for a hardcopy due date of July 2, 1999.

KATAHDIN	TTNUS	GEL
Sample No.	Sample Identification	Sample No.
WP2703-1	29SLB040708	
WP2703-2	29SLB05089	
WP2703-3	29SLB050809D	
WP2703-5	29SLB070708	
WP2703-6	29SLB110708	
WP2703-7	29SLB120708	
WP2703-8	29E00301	
WP2703-9	29F00301	
WP2703-10	29SLB060809	9906058-01
WP2703-11	29T00301	

The samples were logged in for the analyses specified on the chain of custody form. All problems encountered and resolved during sample receipt have been documented on the applicable chain of custody forms.

Sample analyses have been performed by the methods as noted herein.

Volatile Organic Analysis

Two aqueous and seven soil samples were received by the Katahdin Analytical Services, Inc. GC/MS laboratory on June 2, 1999 and were specified to be analyzed by USEPA method 8260B for the analytes benzene, toluene, ethylbenzene, xylenes, MTBE, naphthalene, and EDB.

Analyses for this workorder were performed on the 5972-F and 5972-Z instruments. A VSTD050 (50 ppb standard) was used for the continuing calibration standard. Internal standard and surrogate compounds were also spiked at 50 ug/l.

Batch QC (VBLK, and LCS) was performed in each twelve-hour window. Results are included in this data package. The LCS QC samples were spiked with the entire list of compounds quantitated for at 50 ppb. A matrix spike/matrix spike duplicate pair was analyzed on sample WP2703-10.

Method 8000B, section 7.5.1.2.1 (Revision 2, 12/96) states, "in those instances where the RSD

for one or more analytes exceeds 20%, the initial calibration curve may still be acceptable if the mean of the RSD values for all analytes in the calibration is less than or equal to 20%." Method 8260B narrows this 20% maximum to 15%.

Two initial calibration curves are reported in this workorder. Both calibrations had several analytes exceeding the maximum allowable 15% RSD. The average %RSD for the 5972-F was 13.4%, and the 5972-Z had an average %RSD of 14.9%.

Sample WP2703-1 required reanalysis to confirm matrix interference, both analyses are included. Samples WP2703-2 and 3 were reanalyzed on dilution in order to bring target compounds into the instruments linear range, both diluted and undiluted results are provided.

Several manual integrations were performed due to split peaks; all have been flagged with a "M" (software-generated) on the pertinent quantitation reports. All "M" flags have been dated and initialed by the analyst performing the integration. In addition, all "M" flags have been reviewed and approved by the GC/MS supervisor. Copies of each manual integration are included in the pertinent quantitation reports.

No other protocol deviations were noted by the volatile organics staff.

Semivolatile Organics Extraction and Analysis

Two aqueous and nine soil/sediment samples were received by Katahdin Analytical Services laboratory on June 2, 1999 for analysis in accordance with 8270C for the PAH list of analytes.

Extraction of the aqueous samples occurred following USEPA method 3510 on June 5, 1999. A laboratory control spike consisting of all PAH analytes spiked into organic free water, was extracted in the batch.

Extraction of the soil samples occurred on June 7, 1999, following USEPA method 3550. A laboratory control spike was extracted in the batch, along with a site-specific MS/MSD pair on sample WP2703-10.

The initial calibration curves analyzed in this SDG had some of the target analyte %RSD values exceeding 15 %.

Method 8000B, section 7.5.1.2.1 (Revision 2, 12/96) states, "in those instances where the RSD for one or more analytes exceeds 20%, the initial calibration curve may still be acceptable if the mean of the RSD values for all analytes in the calibration is less than or equal to 20%." Section 7.3.7.1 of method 8270C (revision 3, 12/96) narrows this 20% maximum to 15%.

In the calibration curves analyzed in this SDG, the average %RSD for all analytes was 11.5 and 5.9%, making the curves acceptable.

Analysis of sample WP2703-20 was performed at a 1:20 dilution due to the matrix, resulting in elevated reporting limits for this sample.

Initial analysis of sample WP2703-3 yielded a high recovery of the surrogate nitrobenzene-d5, as well as target analyte conentrations over the upper limit of the calibration curve. Reanalysis occurred at a 1:5 dilution, also with a high recovery of this surrogate. No laboratory action was taken due to the obvious matrix/chromatographic interferences; both sets of data for this sample are included in the data package.

Several manual integrations were performed due to split peaks; all have been flagged with a "M" by the data system. All manual integrations have been dated and initialed by the responsible analyst. Copies of each manual integration are included in the data package. All manual integrations have been reviewed and approved by the GC/MS supervisor.

No other protocol deviations were noted by the semivolatiles organics staff.

Wet Chemistry Analysis

For work order WP2703 the analyses for Total Combustible Organics (TCO) have been performed in accordance with the "Annual Book of ASTM Standards", 1987. Analyses for Solids-Total Residue (TS) for work order WP2703 samples have been performed in accordance with "Contract Laboratory Program Statement of Work for Inorganic Analysis".

All analyses were performed within analytical hold time. No protocol deviations were noted by the Wet Chemistry laboratory staff.

Subcontracted Analysis

Analyses for Total Organic Carbon and Grain size were subcontracted to outside laboratories. Both sets of data are included as separate sections to the data package.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager and/or his designee, as verified by the following signature.

Authorized Signature 7.29.99

KATAHDIN ANALYTICAL SERVICES, INC. SAMPLE RECEIPT CONDITION REPORT					LAB (WORK C	ORDER) #	MV271	03	
Tel. (207) 874-2400					PAGE:		_OF		
Fax (207) 775-4029					COOLER:		OF	2	
CLIENT: Tetra Tech - S	E.	_			SDG# DATE / TIME I	_			Y9.20
PROJECT: <u>CNC</u> Chanles	ton	_			DELIVERED E RECEIVED BY LIMS ENTRY LIMS REVIEW	γ': ΒΥ:		Sau Sau A) C	
	YES □-	NO	EXCEPTIONS	COMME	NTS		RESOL	UTION	
1. CUSTODY SEALS PRESENT / INTACT?	_								
2.CHAIN OF CUSTODY PRESENT IN THIS COOLER?			□						
3. CHAIN OF CUSTODY SIGNED BY CLIENT?			La virgan						
4. CHAIN OF CUSTODY MATCHES SAMPLES?									
5. TEMPERATURE BLANKS PRESENT?				TEMP BL	ANK TEMP (°C)=	5.6	67C	notifia	d Vard Callig
6. SAMPLES RECEIVED AT 4°C +/- 27					TEMP (°C)= D COOLER TEMP	NA ONLY IF TEMP	BLANK IS NO	OT PRESENT)
7. VOLATILES FREE OF HEADSPACE?									
8. TRIP BLANK PRESENT IN THIS COOLER									
9. PROPER SAMPLE CONTAINERS AND VOLUME?									
10. SAMPLES WITHIN HOLD TIME UPON RECEIPT?									
11. SAMPLES PROPERLY PRESERVED(1)?									
12. CORRECTIVE ACTION REPORT FILED?			N/A						
13. ANALYTICAL PROGRAMS (CIRCLE ONE) COMM	IERCIAL	CLP HA	ZWRAP NFESC A	COE AFCEE	OTHER (STATE	OF ORIGIN):			
LOG - IN NOTES ⁽¹⁾ :								_	
1									

Use this space (and additional sheets if necessary) to document samples that are received broken or compromised, C-O-C discrepancies, radiation checks, residual chlorine check, results of pH check if required. If samples required pH adjustment, record volume and type of preservative added.

KATAH W ANALYTICAL SERVICES			7	LAB (WORK ORDER) #	W 2703
SAMPL. RECEIPT CONDITION REP Tel. (207) 874-2400 Fax (207) 775-4029	ORT			PAGE:	OF
, , , , , , , , , , , , , , , , , , , ,				COOLER:	of Z
CLIENT: Tetra Tech - SC		_		COC#SDG# DATE / TIME RECEIVED:	(o-2-99 0920
PROJECT: <u>CNC</u> Charle	ston			DELIVERED BY: RECEIVED BY: LIMS ENTRY BY: LIMS REVIEW BY / PM:	Fed Ex Sa Sa A) C
	YES	МО	EXCEPTIONS	COMMENTS	RESOLUTION
1. CUSTODY SEALS PRESENT / INTACT?					
2.CHAIN OF CUSTODY PRESENT IN THIS COOLER?					
3. CHAIN OF CUSTODY SIGNED BY CLIENT?	O O				
4. CHAIN OF CUSTODY MATCHES SAMPLES?	4				
5. TEMPERATURE BLANKS PRESENT?	E3			TEMP BLANK TEMP (*C)=	KIL notition vand Calliga by fox 6/3/99
6. SAMPLES RECEIVED AT 4°C.±/-2? CE)ICE PACKS PRESENT (Y) or N?		¥		COOLER TEMP (°C)= NA (RECORD COOLER TEMP ONLY IF TEMP	BLANK IS NOT PRESENT)
7. VOLATILES FREE OF HEADSPACE?					
B. TRIP BLANK PRESENT IN THIS COOLER					
9. PROPER SAMPLE CONTAINERS AND VOLUME?					
10. SAMPLES WITHIN HOLD TIME UPON RECEIPT?					
11. SAMPLES PROPERLY PRESERVED ⁽¹⁾ ?					
12. CORRECTIVE ACTION REPORT FILED?	\Box		N/A		
13. ANALYTICAL PROGRAMS (CIRCLE ONE) COMM	ERCIAL	CLP HA	ZWRAP (NFESC)ACO	E AFCEE OTHER (STATE OF ORIGIN):	
LOG - IN NOTES ⁽¹⁾ :					
•					

Use this space (and additional sheets if necessary) to document samples that are received broken or compromised, C-O-C discrepancies, radiation checks, residual chlorine check, results of pH check if required. If samples required pH adjustment, record volume and type of preservative added.

Tel: (207) 874-2400 Fax: (207) 775-4029

CHAIN of CUSTODY

PLEASE PRINT IN PEN

Page ____ of ____

Client Tetra Tec	LNUS	-	Contac	ct		P (hone #)			Fax (k#)		
Address NH 21 A	ve. H	City	V. 0	har	lest	Si	ate C	50		Zip Code	Z 9	409	· .
Purchase Order #	•	j. Name / N								n Quote			
Bill (if different than above)			Ac	dress									
Sampler (Print / Sign) James	R. Hill							Copie	s To:				
	1#: WF2703	· _*						PRESER	ONTAIN VATIVES	,			
KATAHDIN PRO	DJECT MANAGER				Filt.	Filt.	Filt.	Filt.	Filt. OYON	Filt.	Filt. DYON	Filt. □Y□N	Filt.
				/EDB				:			:	<u>:</u>	= 6
SHIPPING INFO: FED EX	☐ UPS	CLIE	NT	WATEE,		95.		:		:	i	:	PPM
TEMP°C TEMP BLANK	INTACT	☐ NOT I	NTACT	3/2	X	1/A	:	· · ·	:				>
* Sample Description	Date / Time coll'd	Matrix	No. of Cntrs.	BIE	A.	FOCT Frain		:				:	:
29518940708	6-1-99/1415	Soil	5	4	1								0
2954845789	1/4/10	**	5	4	1								2000
295LBØ5Ø8Ø9D	1440	17	5	4	1								2000
agslbøgøbøg	11520	11	6	4	1	i							0
2921B&&&&d	1/520	н	5	4	ì								
295134648493	1/520		5	4	1								
295LBØ7Ø7Ø8	11545		5	4	<u> </u>								0
2954B474 JRB	/ /600											<u> </u>	
395LB11Ø7Ø8	1/1600		5	4	1							<u> </u>	0
29513124798	1/620		5	4									0
29Ep\$3ø1	/1545		35	差	3 2								
24 F Ø Ø 3 Ø I	///1615	_	5	23	3 2								
24700301	V /		2	2							<u> </u>	ļ. <u></u>	
	/			<u>'</u>					ļ	<u> </u>			
	/												
COMMENTS													
Relinquished By: (Signature) Da	te / Time Rece	eived By: (S	Signature	e)	Relinguis	shed By: (Signatur	e) D	ate / Ti	ime	Received	Bv: (Sia	(a)
James Hill 6-1	99/1800 8105	4418	583	<u>교</u>					2-99 <u>0</u>	92031	-000a	فأثبا	ممنظا
Aelinquished By: (Signature) Da		eived By: (S		e)	Relinquis	shed By: (Signatur	e) D	ate / Ti	ime	Received	∱ By: (Sig	nature)

ORIGINAL

New England-ME Laboratory (207) 874-2400 CONFIRMATION

Page 1

ORDER NO WP-2703 Project Manager: Andrea J. Colby

ORDER DATE: 06/02/99

REPORT TO: Paul Calligan PHONE: 850/385-9899

Tetra Tech NUS FAX: 850/385-9860

1401 Oven Park Dr., Suite 102 DUE: 02 JUL

Tallahassee, FL 32308 FAC.ID: CNC CHARLESTON

INVOICE: ACCOUNTS PAYABLE PHONE: 412/921-7090

TETRA TECH NUS, INC. PO: N7912-P99264

661 ANDERSEN DRIVE, FOSTER PLAZA VII

PITTSBURGH, PA 15220-2745 PROJECT: CTO #68

SAMPLED BY: J. HILL DELIVERED BY: FEDEX DISPOSE: AFTER 01 AUG

LOG NUMBER	SAMPLE DESCRIPTION	SAMPLED DATE	/TIME	RECEIVE	MATRIX
WP2703-1	29SLB040708	01 JUN	1415	02 JUN	I SL
WP2703-2	29SLB05089	01 JUN	1440		
WP2703-3	29SLB050809D	01 JUN	1440		
WP2703-5	29SLB070708	01 JUN	1545		
WP2703-6	29SLB110708	01 JUN	1600		
W P2703-7	29SLB120708	01 JUN	1620		
<u>DETERMINATIO</u>	ON	METHOD	QTY	PRICE	AMOUNT
Volatile Org	ganics by 8260B	SW8260	6	85.00	510.00
Polynuclear	Aromatic Hydrocarbons	EPA 8270	6	135.00	810.00
Solids-Total	l Residue (TS)	CLP/CIP SO	6	0.00	0.00
TOTALS			6	220.00	1320.00
LOG NUMBER	SAMPLE DESCRIPTION	SAMPLED DATE	/TIME	RECEIVE	<u>MATRIX</u>
WP2703-8	29E00301	01 JUN	1545	02 JUI	V AQ
W P2703-9	29F00301	01 JUN	1615		
DETERMINATION NATION	METHOD	OTY	PRICE	AMOUNT	
Volatile Ord	ganics by 8260B	SW8260	2	75.00	150.00
		EPA 8270	2	125.00	250.00
TOTALS			2	200.00	400.00
	WP2703-1 WP2703-2 WP2703-3 WP2703-5 WP2703-6 WP2703-7 DETERMINATION Volatile Organiclear Solids-Total TOTALS LOG NUMBER WP2703-8 WP2703-9 DETERMINATION Volatile Organiclear Volatile Organiclear	WP2703-1 29SLB040708 WP2703-2 29SLB05089 WP2703-3 29SLB050809D WP2703-5 29SLB070708 WP2703-6 29SLB110708 WP2703-7 29SLB120708 DETERMINATION Volatile Organics by 8260B Polynuclear Aromatic Hydrocarbons Solids-Total Residue (TS) TOTALS LOG NUMBER SAMPLE DESCRIPTION WP2703-8 29E00301 WP2703-9 29F00301 DETERMINATION Volatile Organics by 8260B Polynuclear Aromatic Hydrocarbons	WP2703-1 29SLB040708 01 JUN WP2703-2 29SLB05089 01 JUN WP2703-3 29SLB050809D 01 JUN WP2703-5 29SLB070708 01 JUN WP2703-6 29SLB110708 01 JUN WP2703-7 29SLB120708 01 JUN DETERMINATION METHOD Volatile Organics by 8260B SW8260 Polynuclear Aromatic Hydrocarbons EPA 8270 Solids-Total Residue (TS) CLP/CIP SO TOTALS CLP/CIP SO TOTALS SAMPLED DATE WP2703-8 29E00301 01 JUN WP2703-9 29F00301 01 JUN DETERMINATION METHOD Volatile Organics by 8260B SW8260 Polynuclear Aromatic Hydrocarbons EPA 8270	WP2703-1 29SLB040708 01 JUN 1415 WP2703-2 29SLB05089 01 JUN 1440 WP2703-3 29SLB050809D 01 JUN 1440 WP2703-5 29SLB070708 01 JUN 1545 WP2703-6 29SLB110708 01 JUN 1600 WP2703-7 29SLB120708 01 JUN 1620 DETERMINATION METHOD QTY Volatile Organics by 8260B SW8260 6 Polynuclear Aromatic Hydrocarbons EPA 8270 6 Solids-Total Residue (TS) CLP/CIP SO 6 TOTALS 6 LOG NUMBER SAMPLE DESCRIPTION SAMPLED DATE/TIME WP2703-8 29E00301 01 JUN 1545 WP2703-9 29F00301 01 JUN 1615 DETERMINATION METHOD OTY Volatile Organics by 8260B SW8260 2 Polynuclear Aromatic Hydrocarbons EPA 8270 2	WP2703-1 29SLB040708 01 JUN 1415 02 JUN WP2703-2 29SLB05089 01 JUN 1440 0 WP2703-3 29SLB050809D 01 JUN 1440 0 WP2703-5 29SLB070708 01 JUN 1545 0 WP2703-6 29SLB110708 01 JUN 1600 0 WP2703-7 29SLB120708 01 JUN 1620 0 DETERMINATION METHOD QTY PRICE PRICE Volatile Organics by 8260B SW8260 6 85.00 Polynuclear Aromatic Hydrocarbons EPA 8270 6 135.00 CLP/CIP SO 6 0.00 TOTALS 6 220.00 LOG NUMBER SAMPLE DESCRIPTION SAMPLED DATE/TIME RECEIVED WP2703-8 29E00301 01 JUN 1545 02 JUN WP2703-9 29F00301 01 JUN 1615 02 JUN DETERMINATION METHOD QTY PRICE Volatile Organics by 8260B SW8260 2 75.00 Polynuclear Aromatic Hydrocarbons EPA 8270 2 125.00

New England-ME Laboratory (207) 874-2400 CONFIRMATION

Page 2

ORDER NO WP-2703

Project Manager: Andrea J. Colby

ORDER DATE: 06/02/99 PHONE: 850/385-98

REPORT TO: Paul Calligan

Tetra Tech NUS

1401 Oven Park Dr., Suite 102

Tallahassee, FL 32308

FAX: 850/385-986. DUE: 02 JUL

FAC.ID: CNC CHARLESTON

INVOICE: ACCOUNTS PAYABLE

TETRA TECH NUS, INC.

PHONE: 412/921-7090

FU

PO: N7912-P99264

661 ANDERSEN DRIVE, FOSTER PLAZA VII

PITTSBURGH, PA 15220-2745

PROJECT: CTO #68

SAMPLED BY: J. HILL

DELIVERED BY: FEDEX

DISPOSE: AFTER 01 AUG

3	WP2703-10 29SLB060809	01 JUN 152		01 JUN 1520 02		02 JUN	SL
	DETERMINATION_	METHOD	QTY	PRICE	AMOUNT		
	Volatile Organics by 8260B	SW8260	1	85.00	85.00		
	Polynuclear Aromatic Hydrocarbons	EPA 8270	1	135.00	135.00		
	Solids-Total Residue (TS)	CLP/CIP SO	1	0.00	0.00		
	Wet Lab Subcontract		1	170.00	170.00		
	Total Combustible Organics	ASTM D2974	1	30.00	30.00		
	TOTALS		1	420.00	420.00		

LOG NUMBER SAMPLE DESCRIPTION SAMPLED DATE/TIME RECEIVED MATRIX

	<u>LOG NUMBER</u>	<u>SAMPLE DESCRIPTION</u>	SAMPLED DATE/TIME	RECEIVED	<u>MATRI</u>
4	WP2703-11	29T00301	01 JUN	02 JUN	<u>{</u>

DETERMINATION	METHOD	OTY	PRICE	AMOUNT
Volatile Organics by 8260B	SW8260	1	85.00	85.00

ORDER NOTE: QC-IV NFESC-D

DD(KAS007OC-DB3)

CNC CHARLESTON

REPORT COPY: MS. LEE LECK

TETRA TECH NUS FOSTER PLAZA 7 661 ANDERSEN DR. PITTSBURGH, PA 15220

REPORT & DISK

TOTAL ORDER AMOUNT \$2,225.0

This is NOT an Invoice

AJC/BKR/WEST.AJC(dw)

INVOICE: With Report

06-14Please contact KATAHDIN ANALYTICAL SERVICES promptly if you have any questi

CASE NARRATIVE

for

Katahdin Analytical Westbrook, ME Former Charleston Naval Complex Site SDG #96058S

June 21, 1999

Laboratory Identification:

General Engineering Laboratories, Inc. (GEL)

Mailing Address:

P.O. Box 30712 Charleston, SC 29417

Express Mail Delivery and Shipping Address:

2040 Savage Rd Charleston, SC 29414

Telephone Number:

(843) 556-8171

Summary:

Sample receipt

The samples from the former Charleston Naval Complex site arrived at General Engineering Laboratories, Inc., Charleston, SC on June 1 and 2, 1999, for environmental analyses. All sample containers arrived without any visible signs of tampering or breakage. The samples were delivered with chain of custody documentation and signatures.

The following samples were received by the laboratory:

Laboratory	Sample
<u>Identification</u>	Description
9906058-01	29SLB060809
9906097-01	14SLB020203
9906097-02	14SLB020203D
9906097-03	14SLB050304
9906097-04	15SLB010405

9906097-05	15SLB020405
9906097-06	15SLB020405D
9906097-07	29SLB050809

Case Narrative

Sample analyses were conducted using methodology as outlined in General Engineering Laboratories Standard Operating Procedures. Any technical or administrative problems during analysis, data review, and reduction are listed below by analytical parameter.

Internal Chain of Custody:

Custody was maintained for all samples.

Data Package:

The enclosed data package contains the following sections: Case Narrative, Chain of Custody, Cooler Receipt Checklist, and General Chemistry.

The following are definitions of reporting limits used at General Engineering Laboratories:

Detection Limit: The minimum level of an analyte that can be determined (identified not quantified) with 99% confidence. The values are normally achieved by preparing and analyzing seven aliquots of laboratory water spiked 1 to 5 times the estimated MDL, taking the standard deviation and multiplying it against the one-tailed t-statistic at 99%. This computed value is then verified for reasonableness by repeating the study using the concentration found in the initial study, calculating an F-ratio, and computing the final limit. Sample specific preparation and dilution factors are applied to these limits when they are reported.

The detection limit is the minimum concentration of a substance that can be identified, measured, and reported with 99% confidence that the analyte concentration is above zero. It answers the question "Is It Present."

QL Quantitation Limit: The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. The QL is generally 5 to 10 times the MDL. However, it may be nominally chosen within these guidelines to simplify data reporting. For many analytes the QL analyte concentration is selected as the lowest non-zero standard in the calibration curve.

Sample QL's are highly matrix-dependent. Sample specific preparation and dilution factors are applied to these limits when they are reported.

The QL is always \geq DL.

GENERAL ENGINEERING LABORATORIES

This data package, to the best of my knowledge, is in compliance with technical and administrative requirements.

Valerie S. Davis Project Manager

fc:saic9906058%

Case Narrative for KATA SDG# 96058S

TOTAL PETROLEUM HYDROCARBONS

Analytical Batch Number: 151686

Analytical Method: SW846 9071A

Laboratory Number	Sample Description	
9906097-01	14SLB020203	
9906097-02	14SLB020203D	
9906097-05	15SLB020405	
9906097-06	15SLB020405D	
9906097-07	29SLB050809	
QC621595	Blank	
QC621596	Laboratory Control Sample	
QC621597	Matrix Spike of 9906097-01	
QC621598	Duplicate of 9906097-01	
QC621599	Matrix Spike of 9906242-01	
QC621600	Duplicate of 9906242-01	

Instrument Calibration:

The instrument was properly calibrated.

Holding Time:

All samples were analyzed within the required holding time.

Blanks:

No target analytes were detected in the method blank above the required acceptance limit.

Spike Analyses:

The matrix spikes were run on the following Sample Numbers.

9906097-01 and 9906242-01

All analyte recoveries in the matrix spikes were within the required acceptance limits.

Laboratory Control Samples:

All analyte recoveries in the laboratory control sample were within the required acceptance limits.

Sample Duplicates:

All sample duplicate results were within the required acceptance limits.

Dilutions:

None of the samples were diluted.

Non Conformance Reports:

There were no Nonconformance Reports associated with this batch.

TOTAL ORGANIC CARBON

Analytical Batch Number: 150724

Analytical Method: SW846 9060 Modified

Laboratory Number	Sample Description	
9906058-01	29SLB060809	
9906097-03	14SLB050304	
9906097-04	15SLB010405	
QC617934	Blank	
QC617935	Duplicate of 9906058-01	
QC617936	Post Spike of 9906058-01	
QC617937	Laboratory Control Sample	

Sample Preparation:

All samples were prepared in accordance with accepted procedures. The method quoted is only for liquid samples. It is modified to handle soils analysis.

Instrument Calibration:

The instrument used was a Dohrmann DC-190 high temperature combustion TOC analyzer with a Dohrmann solids boat sampler. The instrument was properly calibrated on the day of the analysis.

Holding Time:

All samples were analyzed within the required holding time.

Blanks:

No target analytes were detected in the method blank above the required acceptance limit.

Spike Analyses:

The post spike was run on the following Sample Number.

9906058-01

All analyte recoveries in the post spike were within the required acceptance limits.

Laboratory Control Samples:

All analyte recoveries in the laboratory control sample were within the required acceptance limits.

Sample Duplicates:

All sample duplicate results were within the required acceptance limits.

Dilutions:

None of the samples were diluted.

Non Conformance Reports:

There were no Nonconformance Reports associated with this batch.

Additional Comments:

TOC solid samples are are tested to determine if inorganic carbon such as carbonates and bicarbonates are present in the sample. If so, the sample is acidified to remove the inorganic carbon, then dried in a low temperature oven. Because the sample portion is dried before analysis, the percent moisture correction is not applied to the TOC solid result.

The preceding narratives have been reviewed by: 1 Date: 06/23/19

General Engineering Lat ies, I 2040 Savage Road Charleston, South Carolina 29407 P.O. Box 30712 ies, Inc.

Charleston, South Carolina 29417 (803) 556-8171

Page of				(CH	Al			F (10	60	20	8	7.								C	harle	ox 30712 eston, South Carolina 2941' 556-8171	7
Client Name/Facility N	ame			_	Т	匸	SAN	APLE A	ANAL	YSIS I	REQUI	RED (X) - us	remar	ks area	to speci	fy spec	ific com	pourid	s or me	thods	\exists	Us.	e F or P in the boxes to indicate whethe sample was filtered and/or preserved	¢I .
Kutuha	(n				8	├┴	╀	╀┸		├-		-	Ц.	ш	1			\dashv		20		┦ '	•	Sample was mission and/or preserved	
Collected by/Company	1-1				18	¥.			출		, P	₹				a pe	喜			· specify					
Kutahd Collected by/Company Tetra	Ech 1	IUS			ONT.	g dect	8			Nitra	Speci	S.	3	¥	Zpeno/	xtrac	tract			E					
SAMPLE ID	DATE	TIME	WELL	COMP	# OF CONTAINERS	pH, conductivity	TOC/DOC	ХŌТ	Chloride, Puoride, Sulfide	Nitrite/Nitrate	VOC - Specify Method required	METALS - specify	Pesticide	Herbk	Total Phenol	Acid Extractables	B/N Extractables	PCB's	Cyanide	Collform			_	Remarks	
729518186484	6/1	1524			<u> </u>		1			<u> </u>															
295LB \$6\$8\$ 295LB \$6\$8\$ 295LB\$6\$8	195 6/1	1520					1																		
295186648	89M 6/1	1524					1					<u> </u>	L												
																			ļ						
																					,				
																							_		
					T																				
			\prod	\prod		Γ																			
				\prod																					
	-		\prod																				_		
Relinquished by:	71	Date: 6199	17	54	Rec	elved	by:						Reli	nguish	ed by:					_	Date:	Tim	ne;	Received by:	
Relinquished by:		Date:	Tin	ne:	Rec	eived	by lab	by:	<u> </u>	<u></u> _			Date	,	Tim		Rem	urks:				'		<u></u>	

CHAIN OF CUSTODY RECORD

White = sample collector

Yellow = file

Pink = with report

General Engineering Laboratories, Inc. 2040 Savage Road Charleston, South Carolina 29407 P.O. Box 30712 Charleston, South Carolina 29417 (803) 556-8171

	Page of	_												٥	19	6 0	۵,	97	7/	<u> </u>				(803)	556-8171	
	Client Name/Facility Na	ame	1	1.			\vdash	SAN	APLE.	ANAL	YSIS	REQU	IRED	(X) - 122	е гета	rks area	to spec	ify spec		<u>LL.</u>	<u> </u>	<u> </u>	$\top \bot$	• U	se F or P in the boxes to indicate sample was filtered and/or pres	
	Katana	Cin A	malu	1	(C)	NE NE	2			÷		2	ŧ				120	10			ş					
	Collected by/Company	tec	hNi	<u>ر</u>	\$	ONTAI	pH, conductivity	8		le, Fluor	Ni trite/Nitrate	Specify d requir	S.1 88	-26	- <u>Ş</u>	Phenot	Acid Extractables	B/N Extractables	İ	ھ ا	- 5P	<u></u>				
	Client Name/Facility Na Kataha Collected by/Company Name/Facility Na Collected by/Company SAMPLE ID	DATE	TIME	WELL	COMP	# 0F C	pH, co	ТОСЛВОС	TOX	Chloride, Fluoride, Sulfide	Ni Crite	VOC - Specify Method required	META	Pesticia	Herbic	Total Phenot	Acid E	BAN E.	PCB's	Cyanic	Collform - specify type	+			Remarks	
۱ ک	145LBØ24243					ļ																1				- Line
ے د	145LBWZB2G3D	6 24	145\$			į																1				
	145LB454349		1525			1		Į																		
۶५(155LB\$1\$416.	- 11	1220			1.	-	1																		
کد	155LB\$2444.	j 11	1230			1																1				
عا	155613626465	D 11	/23¢			1																1				
7	29 SLB/65 484	9 "	1455			ĺ																4				
							<u> </u>																			
	<u> </u>																									
	Relinquished by:	The same of the sa	Date:	Tim	ψ	Rec	eived l	by:						Reli	nquist	ed by:						Da	ite:	Time:	Received by:	
	Relinquished by:		Date:	Tim	ie:		eived l	by lab	by:	<u>. </u>				Date		Tim		Rem	mrks:							ż

FEDERAL SAMPLEORE	CEIPT REVIEW
Client KA7A Received by	Date 6/2/99
GEL COOLER GEL POLY COOLER CLIEN	
SAMPLE REVIEW CRITERIA	YES NO COMMENTS/QUALIFIERS
Were shipping containers received intact and sealed? If no, notify Project Manager	
 Was the Shipment screened following the radiochemistry survey procedure (EPI SOP S-007)? 	
Were the survey results negative? If no, notify Project Manager	1
Are any of the samples identified by the client as radioactive? If yes, did client provide RAD activity?	
Were chain of custody documents included?	
Were chain of custody documents completed correctly? (Ink. signed, match containers)	
5. Were all sample containers properly labeled?	V
6. Were proper sample containers received?	
7. Preserved samples checked for pH?	
8. Were samples preserved correctly? If no, list samples & tests	
9. Shipping container temperature checked?	
10. Was shipping constiner temperature within specifications (4°± 2° C) If no, notify Project Manager	4°C
11. Is temperature documented on the Chain of Custody?	
12. Were samples received within holding time? if No, notify Project Manger	
13. Were VOA vials free of headspace?	
14. ARCOC# IF REQUIRED	
15. SDG# IF REQUIRED	
REVIEW HAULIN DATE 6/12/99 SA-SE	ALS ATTACHED NSA - NO SEALS ATTACHED

FEDERAL SAMPLE RECEIPT REVIEW

TEDERAL SAMILLE KE	CELL I RESTERVE
Client KATA Received by CG	Date 6/2/89
GEL COOLER GEL POLY COOLER CLIEN	T COOLERV OTHER
SAMPLE REVIEW CRITERIA	YES NOCOMMENTS/QUALIFIERS
Were shipping containers received intact and sealed? If no, notify Project Manager	
 Was the Shipment screened following the radiochemistry survey procedure (EPI SOP S-007)? 	
Were the survey results negative? If no. notify Project Manager	
Are any of the samples identified by the client as radioactive? If yes, did client provide RAD activity?	
Were chain of custody documents included?	
 Were chain of custody documents completed correctly? (Ink, signed, match containers) 	
5. Were all sample containers properly labeled?	
6. Were proper sample containers received?	
7. Preserved samples checked for pH?	1+10
8. Were samples preserved correctly? If no, list samples & tests	1+ Soil
9. Shipping container temperature checked?	
 Was shipping conatiner temperature within specifications (4°± 2° C) If no, notify Project Manager 	4°C
11. Is temperature documented on the Chain of Custody?	
12. Were samples received within holding time? if No. notify Project Manger	
13. Were VOA vials free of headspace?	
14. ARCOC# IF REQUIRED	
15. SDG# IF REQUIRED	7 96097
REVIEW HALLES DATE 6/2/99 SA-SE	. EALS ATTACHED NSA - NO SEALS ATTACHED

Client: Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2703-1

SDG:

WP2703

Report Date:

7/2/99

PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

93

Method:

SW8260

Date Analyzed: 6/4/99

Sample Description	Matrix	Sam	pled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
29SLB040708	SL	(5/1/99	6/2/99	6/4/99	KMC	5030	КМС
Compound	R	esult	Units	DF	Sample PQL	Method PQL	•	
BENZENE		<6	ug/Kg	1.3	6	5	-	
TOLUENE		<6	ug/Kg	1.3	6	5		
1,2-DIBROMOETHANE		<6	ug/Kg	1.3	6	5		
ETHYLBENZENE		<6	ug/Kg	1.3	6	5		
NAPHTHALENE		<6	ug/Kg	1.3	6	5		
MTBE		<6	ug/Kg	1.3	6	5		
TOTAL XYLENES		<6	ug/Kg	1.3	6	5		
DIBROMOFLUOROMETHANE		75	%	1.3				
1,2-DICHLOROETHANE-D4		71	%	1.3				
TOLUENE-D8	:	\$65	%	1.3				
P-BROMOFLUOROBENZENE		70	%	1.3				

Report Notes:

\$

1

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2703-1RA

SDG:

WP2703

Report Date:

7/2/99

PO No.:

N7912-P99264 CTO #68

Project:

% Solids:

93

Method:

SW8260

Date Analyzed:

6/5/99

Sample Description	Matrix	Sampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
29SLB040708	SL	6/1/99	6/2/99	6/5/99	JSS	5030	JSS
Compound	Resi	ult Units	DF	Sample PQL	Method PQL	_	
BENZENE	<6	ug/Kg	1.3	6	5		
TOLUENE	<6	ug/Kg	1.3	6	5		
1,2-DIBROMOETHANE	<6	ug/Kg	1.3	6	5		
ETHYLBENZENE	<6	ug/Kg	1.3	6	5		
NAPHTHALENE	<6	ug/Kg	1.3	6	5		
MTBE	<6	ug/Kg	1.3	6	5		
TOTAL XYLENES	<6	ug/Kg	1.3	6	5		
DIBROMOFLUOROMETHANE	81	%	1.3				
1,2-DICHLOROETHANE-D4	77	%	1.3				
LUENE-D8	70	%	1.3				
***BROMOFLUOROBENZENE	. \$54	4 %	1.3				

port Notes:

\$

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2703-2

SDG:

WP2703

Report Date:

7/2/99

PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

93

Method:

SW8260

Date Analyzed: 6/4/99

Sample Description	Matrix	Sampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
29SLB05089	SL	6/1/99	6/2/99	6/4/99	KMC	5030	KMC
Compound	Res	sult Units	DF	Sample PQL	Method PQL		
BENZENE	9	ug/Kg	1.4	7	5		
TOLUENE	12	20 ug/Kg	1.4	7	5		
1,2-DIBROMOETHANE	<	7 ug/Kg	1.4	7	5		
ETHYLBENZENE	E12	200 ug/Kg	1.4	7	5		
NAPHTHALENE	E5:	50 ug/Kg	1.4	7	5		
MTBE	<	7 ug/Kg	1.4	7	5		
TOTAL XYLENES	E30	000 ug/Kg	1.4	7	5		
DIBROMOFLUOROMETHANE	9	1 . ′%	1.4				
1,2-DICHLOROETHANE-D4	9:	9 %	1.4				
TOLUENE-D8	7	1%	1.4				
P-BROMOFLUOROBENZENE	. 15	51 %	1.4				

Report Notes:

Ε

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2703-2DL

SDG:

WP2703

Report Date:

7/2/99 N7912-P99264

PO No.: Project:

CTO #68

% Solids:

93

Method:

SW8260

Date Analyzed: 6/7/99

Sample Description	Matrix S	ampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
29SLB05089	SL	6/1/99	6/2/99	6/7/99	KRT	5030	KRT
Compound	Resu	t Units	DF	Sample PQL	Method PQL		
BENZENE	<600	ug/Kgdrywt	120	600	5		
TOLUENE	<600	ug/Kgdrywt	120	600	5		
1,2-DIBROMOETHANE	<600	ug/Kgdrywt	120	600	5		
ETHYLBENZENE	1200	ug/Kgdrywt	120	600	5		
NAPHTHALENE	5300	ug/Kgdrywt	120	600	5		
MTBE	<600	ug/Kgdrywt	120	600	5		
TOTAL XYLENES	3400	ug/Kgdrywt	120	600	5		
DIBROMOFLUOROMETHANE	86	%	120				
1,2-DICHLOROETHANE-D4	79	%	120				
OLUENE-D8	88	%	120				
BROMOFLUOROBENZENE	. 82	%	120				

.eport Notes:

0-2, 0-1

Client:

Paul Calligan

Tetra Tech NUS 1401 Öven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2703-3

SDG:

WP2703

Report Date:

7/2/99

PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

Method:

SW8260 6/4/99

Date Analyzed:

Sample Description	Matrix	Samp	led Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
29\$LB050809D	SL	6/	1/99	6/2/99	6/4/99	кмс	5030	кмс
Compound	Re	esult	Units	DF	Sample PQL	Method PQL		
- BENZENE		46	ug/Kg	1.5	7	5		
TOLUENE	2	260	ug/Kg	1.5	7	5		
1,2-DIBROMOETHANE		<7	ug/Kg	1.5	7	5		
ETHYLBENZENE	E1	1800	ug/Kg	1.5	7	5		
NAPHTHALENE	E	570	ug/Kg	1.5	7	5		
MTBE		<7	ug/Kg	1.5	7	5		
TOTAL XYLENES	E4	4300	ug/Kg	1.5	7	5		
DIBROMOFLUOROMETHANE	1	17	%	1.5				
,2-DICHLOROETHANE-D4	1	22	%	1.5				
OLUENE-D8	!	99	%	1.5				
P-BROMOFLUOROBENZENE	. 1	88	%	1.5				

Report Notes:

Ε

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2703-3DL

SDG: Report Date: WP2703 7/2/99

PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

93

Method:

SW8260

Date Analyzed: 6/7/99

Sample Description	Matrix	Sampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
29\$LB050809D	SL	6/1/99	6/2/99	6/7/99	KRT	5030	KRT
Compound	Res	ult Units	DF	Sample PQL	Method PQL		
BENZENE	<65	50 ug/Kgdrywt	130	650	5		
TOLUENE	J63	0 ug/Kgdrywt	130	650	5		
1,2-DIBROMOETHANE	<65	60 ug/Kgdrywt	130	650	5		
ETHYLBENZENE	350	00 ug/Kgdrywt	130	650	5		
NAPHTHALENE	540	00 ug/Kgdrywt	130	650	5		
MTBE	<65	0 ug/Kgdrywt	130	650	5		
TOTAL XYLENES	900	00 ug/Kgdrywt	130	650	5		
DIBROMOFLUOROMETHANE	88	%	130				
1,2-DICHLOROETHANE-D4	81	%	130				
TOLUENE-D8	86	s %	130				
-BROMOFLUOROBENZENE	77	%	130				

port Notes:

J, O-2

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2703-5

SDG:

WP2703

Report Date:

7/2/99

PO No. :

N7912-P99264

Project:

CTO #68

91

% Solids:

SW8260

Method: Date Analyzed: 6/5/99

Sample Description	Matrix	Samp	led Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
29SLB070708	SL	6/	1/99	6/2/99	6/5/99	zzt	5030	JSS
Compound	Re	suit	Units	DF	Sample PQL	Method PQL		
BENZENE	•	:6	ug/Kg	1.3	6	5		
TOLUENE	•	:6	ug/Kg	1.3	6	5		
1,2-DIBROMOETHANE	•	:6	ug/Kg	1.3	6	5		
ETHYLBENZENE	•	:6	ug/Kg	1.3	6	5		
NAPHTHALENE	<	:6	ug/Kg	1.3	6	5		
MTBE	<	6	ug/Kg	1.3	6	5		
TOTAL XYLENES	<	6	ug/Kg	1.3	6	5		
DIBROMOFLUOROMETHANE	10	00	%	1.3				
1,2-DICHLOROETHANE-D4	Ş	9	%	1.3				
TOLUENE-D8	ε	8	%	1.3				
P-BROMOFLUOROBENZENE	. 6	7	%	1.3				

Report Notes:

Client;

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2703-6

SDG:

WP2703

Report Date:

7/2/99

PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

94

Method:

SW8260

Date Analyzed: 6/4/99

Sample Description	Matrix	Samp	led Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
29SLB110708	SL	6/	1/99	6/2/99	6/4/99	KMC	5030	KMC
Compound	Re	sult	Units	DF	Sample PQL	Method PQL		
BENZENE		<7	ug/Kg	1.4	7	5		
TOLUENE	•	<7	ug/Kg	1.4	7	5		
1,2-DIBROMOETHANE	•	<7	ug/Kg	1.4	7	5		
ETHYLBENZENE	•	<7	ug/Kg	1,4	7	5		
NAPHTHALENE	,	J4	ug/Kg	1.4	7	5		
MTBE	•	<7	ug/Kg	1.4	7	5		
TOTAL XYLENES	•	<7	ug/Kg	1.4	7	5		
DIBROMOFLUOROMETHANE	9	96	%	1.4				
1,2-DICHLOROETHANE-D4	Ç	97	%	1.4				
OLUENE-D8	•	79	%	1.4				

1.4

75

%

aport Notes;

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2703-7

SDG:

WP2703

Report Date: PO No.:

7/2/99 N7912-P99264

Project:

CTO #68

% Solids:

92

Method:

SW8260

Date Analyzed:

6/4/99

Sample Description	Matrix	Sampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
29SLB120708	SL	6/1/99	6/2/99	6/4/99	КМС	5030	KMC
Compound	Re	suit Units	DF	Sample PQL	Method PQL		
BENZENE	<	:6 ug/Kg	1.2	6	5		
TOLUENE	<	:6 ug/Kg	1.2	6	5		
1,2-DIBROMOETHANE	<	:6 ug/Kg	1.2	6	5		
ETHYLBENZENE	<	6 ug/Kg	1,2	6	5		
NAPHTHALENE	<	6 ug/Kg	1.2	6	5		
MTBE	<	:6 ug/Kg	1.2	6	5		
TOTAL XYLENES	<	:6 ug/Kg	1.2	6	5		
DIBROMOFLUOROMETHANE	10	08 %	1,2				
,2-DICHLOROETHANE-D4	10	06 %	1.2				
FOLUENE-D8	10	07 %	1.2				
P-BROMOFLUOROBENZENE	. 11	10 %	1.2				

Report Notes:

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2703-8

Report Date:

WP2703 7/2/99

PO No.:

N7912-P99264

Project:

SDG:

CTO #68

% Solids:

N/A

Method:

SW8260

Date Analyzed: 6/4/99

Sample Description	Matrix	Sampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
29E00301	AQ	6/1/99	6/2/99	6/4/99	DJP	5030	DJP
Compound	Res	sult Units	DF	Sample PQL	Method PQL		
BENZENE	<	5 ug/L	1.0	5	5	_	
TOLUENE	<	5 ug/L	1.0	5	5		
1,2-DIBROMOETHANE	<	5 ug/L	1.0	5	5		
ETHYLBENZENE	<	5 ug/L	1.0	5	5		
NAPHTHALENE	<	5 ug/L	1.0	5	5		
MTBE	<	5 ug/L	1.0	5	5		
TOTAL XYLENES	<	5 ug/L	1.0	5	5		
DIBROMOFLUOROMETHANE	9	1 %	1.0				
1,2-DICHLOROETHANE-D4	9	6 %	1.0				
⊃LUENE-D8	9:	2 %	1.0				
3ROMOFLUOROBENZENE	. 8	4 %	1.0				

port Notes:

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2703-9

SDG:

WP2703

Report Date:

7/2/99 N7912-P99264

PO No.:

Project:

CTO #68

% Solids:

N/A

Method:

SW8260

Date Analyzed: 6/4/99

Sample Description	Matrix	Sampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
29F00301	AQ	6/1/99	6/2/99	6/4/99	DJP	5030	DJP
Compound	Resu	ult Units	DF	Sample PQL	Method PQL		_
BENZENE	<5	ug/L	1.0	5	5		
TOLUENE	<5	ug/L	1.0	5	5		
1,2-DIBROMOETHANE	<5	ug/L	1.0	5	5		
ETHYLBENZENE	<5	ug/L	1.0	5	5		
NAPHTHALENE	<5	ug/L	1.0	5	5		
MTBE	<5	ug/L	1.0	5	5		
TOTAL XYLENES	<5	ug/L	1.0	5	5		
DIBROMOFLUOROMETHANE	92	%	1.0				
1,2-DICHLOROETHANE-D4	94	%	1.0				
TOLUENE-D8	94	%	1.0				
P-BROMOFLUOROBENZENE	85	%	1.0				

Report Notes:

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2703-10

SDG: Report Date: WP2703 7/2/99

PO No.:

N7912-P99264

Project:

CTO #68

93

% Solids: Method:

Date Analyzed: 6/4/99

SW8260

Sample Description	Matrix	Sampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
CORL DOCUME		C(4.000	Crorno	6/4/60		5030	

29SLB060809	SL	6/1/99	6/2/99	6/4/99	DJP	5030	DJP
Compound	Result	Units	DF	Sample PQL	Method PQL		
BENZENE	<600	ug/Kgdrywt	120	600	5		
TOLUENE	<600	ug/Kgdrywt	120	600	5		
1,2-DIBROMOETHANE	<600	ug/Kgdrywt	120	600	5		
ETHYLBENZENE	<600	ug/Kgdrywt	120	600	5		
NAPHTHALENE	<600	ug/Kgdrywt	120	600	5		
MTBE	<600	ug/Kgdrywt	120	600	5		
TOTAL XYLENES	<600	ug/Kgdrywt	120	600	5		
DIBROMOFLUOROMETHANE	92	%	120				
1,2-DICHLOROETHANE-D4	94	%	120				
TOLUENE-D8	93	%	120				
-BROMOFLUOROBENZENE	. 85	%	120				

eport Notes:

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2703-11

SDG:

WP2703

Report Date:

7/2/99

PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

Method:

SW8260

Date Analyzed: 6/4/99

Sample Description	Matrix	Sampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
29T00301	SL	6/1/99	6/2/99	6/4/99	DJP	5030	DJP
Compound	Resi	uit Units	DF	Sample PQL	Method PQL		
BENZENE	<5	ug/Kgdrywt	1.0	5	5		
TOLUENE	<5	ug/Kgdrywt	1.0	5	5		
1,2-DIBROMOETHANE	<5	ug/Kgdrywt	1.0	5	5		
ETHYLBENZENE	<5	ug/Kgdrywt	1.0	5	5		
NAPHTHALENE	<5	ug/Kgdrywt	1.0	5	5		
MTBE	<5	ug/Kgdrywt	1.0	5	5		
TOTAL XYLENES	<5	ug/Kgdrywt	1.0	5	5		
DIBROMOFLUOROMETHANE	92	%	1.0				
1,2-DICHLOROETHANE-D4	92	%	1.0				
TOLUENE-D8	95	%	1.0				
P-BROMOFLUOROBENZENE	. 86	· %	1.0				

Report Notes:

KATAHDIN ANALYTICAL SERVICES Summary of Report Notes

Report Note	Note Text
\$	'\$' flag denotes surrogate compound recovery is out of criteria. Re-extraction or re-analysis confirmed matrix interference.
E	'E' flag indicates an estimated value. The analyte was detected in the sample at a concentration greater than the standard calibration range.
J	'J' flag denotes an estimated value less than the Laboratory's Practical Quantitation Level.
O-1	Sample dilution required due to matrix interference, sample viscosity or other matrix-related problem; therefore, standard laboratory Practical Quantitation Level (PQL) could not be achieved.
0-2	Sample dilution required for quantitation of one or more target analytes; therefore, standard laboratory Practical Quantitation Level (PQL) could not be achieved.

2A WATER VOLATILE SYSTEM MONITORING COMPOUND RECOVERY

Lab Name: Katahdin Analytical Services SDG No.: WP2703

Matrix: WATER

Client Sample ID	Lab Sample ID	SMC1 (DFM) #	SMC2 (DCA) #	SMC3 (TOL)#	SMC4 (BFB) #	Total Out
LCSF03A	LCSF03A	92	90	94	97	0
VBLKF03B	VBLKF03B	91	92	93	87	0
LCSF04A	LCSF04A	91	95	93	96	0
VBLKF04A	VBLKF04A	92	98	94	88	0
29E00301	WP2703-8	91	96	92	84	0
29F00301	WP2703-9	92	94	94	85	0
LCSF07A	LCSF07A	89	81	86	87	0
VBLKF07A	VBLKF07A	88	80	85	79	0

QC LIMITS

SMC1	(DFM)	=	DIBROMOFLUOROMETHANE	(75-129)
SMC2	(DCA)	=	1,2-DICHLOROETHANE-D4	(65-135)
SMC3	(TOL)	=	TOLUENE-D8	(82-120)
SMC4	(BFB)	=	P-BROMOFLUOROBENZENE	(69-125)

- # Column to be used to flag recovery value
- * Values are outside of QC limits

2A SOIL VOLATILE SYSTEM MONITORING COMPOUND RECOVERY

Lab Name: Katahdin Analytical Services

SDG No.: WP2703

Matrix:

SOIL

Client	Lab	SMC1	SMC2	SMC3	SMC4	Total
Sample ID	Sample ID	(DFM) #	(DCA)#	(TOL) #	(BFB) #	Out
29SLB060809	WP2703-10	92	94	93	85	0
29SLB060809MS	WP2703-10MS	90	92	93	93	0
29SLB060809MSD	WP2703-10MSD	92	92	94	97	0
29T00301	WP2703-11	92	92	95	86	0
29SLB05089DL	WP2703-2DL	86	79	88	82	0
29SLB050809DDL	WP2703-3DL	88	81	86	77	0
LCSZ04A	LCSZ04A	110	115	113	110	0
VBLKZ04A	VBLKZ04A	122	124	113	109	0
29SLB040708	WP2703-1	75	71	6 5 *	70	1
29SLB05089	WP2703-2	91	99	71	151	0
29SLB050809D	WP2703-3	117	122	99	188 *	1
29SLB110708	WP2703-6	96	97	79	75	0
29SLB120708	WP2703-7	108	106	107	110	0
LCSZ05A	LCSZ05A	105	108	107	109	0
VBLKZ05A	VBLKZ05A	117	116	114	107	0
29SLB040708	WP2703-1RA	81	77	70	54 *	1
29SLB070708	WP2703-5	100	99	88	67	0

QC LIMITS

SMC1	(DFM)	=	DIBROMOFLUOROMETHANE	(69-148)
SMC2	(DCA)	=	1,2-DICHLOROETHANE-D4	(66-149)
SMC3	(TOL)	=	TOLUENE-D8	(68-147)
SMC4	(BFB)	=	P-BROMOFLUOROBENZENE	(64-152)

- # Column to be used to flag recovery value
- * Values are outside of QC limits

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

VBLKF03B

SDG:

WP2703

Report Date:

7/2/99

PO No.: Project:

N7912-P99264 CTO #68

% Solids:

N/A

Method:

SW8260

6/3/99 Date Analyzed:

Sample Description	Matrix	Samp	oled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
VBLKF038	ΩA		•	-	6/3/99	DJP	5030	DJP
Compound	R	esult	Units	DF	Sample PQL	Method PQL		
BENZENE		<5	ug/L	1.0	5	5		
TOLUENE		<5	ug/L	1.0	5	5		
1,2-DIBROMOETHANE		<5	ug/L	1.0	5	5		
ETHYLBENZENE		<5	ug/L	1.0	5	5		
NAPHTHALENE		<5	ug/L	1.0	5	5		
MTBE		<5	ug/L	1.0	5	5		
TOTAL XYLENES		<5	ug/L	1.0	5	5		
DIBROMOFLUOROMETHANE		91	%	1.0				
1,2-DICHLOROETHANE-D4		92	%	1.0				
TOLUENE-D8		93	%	1.0				
P-BROMOFLUOROBENZENE		87	%	1.0				

Client:

Paul Calligan

Tetra Tech NUS

1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

VBLKF04A

SDG:

WP2703 7/2/99

Report Date: PO No. :

N7912-P99264

Project:

CTO #68

% Solids:

N/A

.. - - - - - -

N/A

Method:

SW8260 6/4/99

Date Analyzed:

Sample Description	Matrix	Samp	oled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
VBLKF04A	AQ		-	•	6/4/99	DJP	5030	DJP
Compound	Re	suit	Units	DF	Sample PQL	Method PQL		
BENZENE		<5	ug/L	1.0	5	5		
TOLUENE	•	<5	ug/L	1.0	5	5		
1,2-DIBROMOETHANE	•	<5	ug/L	1.0	5	5		
ETHYLBENZENE	•	<5	ug/L	1.0	5	5		
NAPHTHALENE	•	<5	ug/L	1.0	5	5		
MTBE	•	<5	ug/L	1.0	5	5		
TOTAL XYLENES		<5	ug/L	1.0	5	5		
DIBROMOFLUOROMETHANE	9	92	%	1.0				
1,2-DICHLOROETHANE-D4	٤	98	%	1.0				
.UENE-D8	9	94	%	1.0				
ROMOFLUOROBENZENE	8	38	%	1.0				

ort Notes:

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

VBLKZ04A

SDG:

WP2703

Report Date:

7/2/99

PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

100

Method:

SW8260

Date Analyzed: 6/4/99

Sample Description	Matrix	Sampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
VBLKZ04A	SL	<u>.</u>	•	6/4/99	KMC	5030	КМС
Compound	Res	sult Units	DF	Sample PQL	Method PQL		
BENZENE	<	5 ug/Kg	1.0	5	5		
TOLUENE	<	5 ug/Kg	1.0	5	5		
1,2-DIBROMOETHANE	<	5 ug/Kg	1.0	` 5	5		
ETHYLBENZENE	<	5 ug/Kg	1.0	5	5		
NAPHTHALENE	<	5 ug/Kg	1.0	5	5		
MTBE	<	5 ug/Kg	1.0	5	5		
TOTAL XYLENES	<	5 ug/Kg	1.0	5	5		
DIBROMOFLUOROMETHANE	12	22 %	1.0				
1,2-DICHLOROETHANE-D4	12	24 %	1.0				
TOLUENE-D8	11	13 %	1.0				
P-BROMOFLUOROBENZENE	10	09 %	1.0				

াent:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

VBLKZ05A

SDG:

WP2703

Report Date:

7/2/99

PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

100

Method:

SW8260 6/5/99

Date Analyzed:

Sample Description	Matrix Sa	mpled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
VBLKZ05A	SL	•	-	6/5/99	JSS	5030	JSS
Compound	Result	Units	DF	Sample PQL	Method PQL		
BENZENE		ug/Kg	1.0	5	5		
TOLUENE	<5	ug/Kg	1.0	5	5		
1,2-DIBROMOETHANE	<5	ug/Kg	1.0	5	5		
ETHYLBENZENE	<5	ug/Kg	1.0	5	5		
NAPHTHALENE	<5	ug/Kg	1.0	5	5		
MTBE	<5	ug/Kg	1.0	5	5		
TOTAL XYLENES	<5	ug/Kg	1.0	5	5		
DIBROMOFLUOROMETHANE	117	%	1.0				
2-DICHLOROETHANE-D4	116	%	1.0				
LUENE-D8	114	%	1.0				
P-BROMOFLUOROBENZENE	107	%	1.0				

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

VBLKF07A

SDG:

WP2703

Report Date:

7/2/99

PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

N/A

Method:

SW8260

Date Analyzed:

6/7/99

Sample Description	Matrix	Sam	pled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
VBLKF07A	AQ		-	-	6/7/99	KRT	5030	KRT
Compound	R	esuit	Units	DF	Sample PQL	Method PQL		
BENZENE		<5	ug/L	1.0	5	5		
TOLUENE		<5	ug/L	1.0	5	5		
1,2-DIBROMOETHANE		<5	ug/L	1.0	5	5		
ETHYLBENŻENE		<5	ug/L	1.0	5	5		
NAPHTHALENE		<5	ug/L	1.0	5	5		
MTBE		<5	ug/L	1.0	5	5		
TOTAL XYLENES		<5	ug/L	1.0	5	5		
DIBROMOFLUOROMETHANE		88	%	1.0				
,2-DICHLOROETHANE-D4		80	%	1.0				
OLUENE-D8		85	%	1.0				
P-BROMOFLUOROBENZENE		79	%	1.0				

Lab File: F0728

Sample ID: LCSF03A

Date Run: 6/3/99

Analyst: DJP

Time Injected 10:33:00 PM

Matrix: AQ

Compound Name	Spike Amt (ug/L)	Result (ug/L)	Rec (%)	Limits (%)
1,2-DIBROMOETHANE	50	52.8	106	60-140
BENZENE	50	51.0	102	60-140
ETHYLBENZENE	50	49.8	100	60-140
МТВЕ	50	49.6	99	60-140
NAPHTHALENE	50	48.7	97	60-140
TOLUENE	50	51.3	103	60-140
TOTAL XYLENES	150	146	97	60-140

Lab File: F0744

Sample ID: LCSF04A

Date Run: 6/4/99

Analyst: DJP

Time Injected 9:14:00 AM

Matrix: AQ

Compound Name	Spike Amt (ug/L)	Result (ug/L)	Rec (%)	Limits (%)
1,2-DIBROMOETHANE	50	54.1	108	60-140
BENZENE	50	51.2	102	60-140
ETHYLBENZENE	50	50.6	101	60-140
MTBE	50	50.1	100	60-140
NAPHT <u>HAL</u> ENE	50	49.3	99	60-140
TOLUENE	50	51.1	102	60-140
TOTAL XYLENES	150	146	98	60-140

Lab File: Z0972

Sample ID: LCSZ04A

Date Run: 6/4/99

Analyst: KMC

Time Injected 9:27:00 AM

Matrix: SL

Compound Name	Spike Amt (ug/Kg)	Result (ug/Kg)	Rec (%)	Limits (%)
1,2-DIBROMOETHANE	50	58.3	116	60-140
BENZENE	50	54.8	110	60-140
ETHYLBENZENE	50	65.9	132	60-140
МТВЕ	50	56,5	113	60-140
NAPHTHALENE	50	50.5	101	60-140
TOLUENE	50	59.1	118	60-140
TOTAL XYLENES	150	202	135	60-140

Lab File: Z0988

Sample ID: LCSZ05A

Date Run: 6/5/99

Analyst: JSS

Time Injected 11:30:00 AM

Matrix: SL

Compound Name	Spike Amt (ug/Kg)	Result (ug/Kg)	Rec (%)	Limits (%)
1,2-DIBROMOETHANE	50	49.9	100	60-140
BENZENE	50	48.3	97	60-140
ETHYLBENZENE	50	55.2	110	60-140
MTBE	50	52.5	105	60-140
NAPHTHALENE	50	45.8	92	60-140
FOLUENE	50	49.2	98	60-140
TOTAL XYLENES	150	165	110	60-140

Lab File: F0796

Sample ID: LCSF07A

Date Run: 6/7/99

Analyst: KRT

Time Injected 10:00:00 AM

Matrix: AQ

Compound Name	Spike Amt (ug/L)	Result (ug/L)	Rec (%)	Limits (%)
1,2-DIBROMOETHANE	50	46.3	92	60-140
BENZENE	50	47.2	94	60-140
ETHYLBENZENE	50	47.9	96	60-140
МТВЕ	50	45.7	91	60-140
NAPHTHALENE	50	46.8	94	60-140
TOLUENE	50	47.1	94	60-140
TOTAL XYLENES	150	141	94	60-140

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2703-1

SDG:

WP2703 7/27/99

Report Date: PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

93

Method:

EPA 8270

Date Analyzed: 7/14/99

Sample Description	Matrix San	pled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
29SLB040708	SL 6/1/99		6/2/99	6/7/99	PMM	SW3550	KRT
Compound	Result	Units	DF	Sample PQL	Method PQL		
NAPHTHALENE	<360	ug/Kg	1.1	360	330		
2-METHYLNAPHTHALENE	<360	ug/Kg	1.1	360	330		
ACENAPHTHYLENE	<360	ug/Kg	1.1	360	330		
ACENAPHTHENE	<360	ug/Kg	1.1	360	330		
FLUORENE	<360	ug/Kg	1.1	360	330		
PHENANTHRENE	<360	ug/Kg	1.1	360	330		
ANTHRACENE	<360	ug/Kg	1.1	360	330		
FLUORANTHENE	<360	ug/Kg	1.1	360	330		
PYRENE	<360	ug/Kg	1.1	360	330		
BENZO(A)ANTHRACENE	<360	ug/Kg	1.1	360	330		
CHRYSENE	<360	ug/Kg	1.1	360	330		
BENZO[B]FLUORANTHENE	<360	ид/Кд	1.1	360	330		
BENZO(K)FLUORANTHENE	<360	ид/Кд	1.1	360	330		
BENZO[A]PYRENE	<360	ug/Kg	1.1	360	330		
INDENO[1,2,3-CD]PYRENE	<360	ug/Kg	1.1	360	330		
DIBENZ[A,HJANTHRACENE	<360	ug/Kg	1.1	360	330		
BENZO[G,H,I]PERYLENE	<360	⊔g/Kg	1,1	360	330		
NITROBENZENE-D5	57	%	1.1				
2-FLUOROBIPHENYL	65	%	1.1				
TERPHENYL-D14	90	%	1.1				

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2703-2

SDG:

WP2703

Report Date: PO No.:

7/27/99 N7912-P99264

Project:

CTO #68

% Solids:

93

Method:

EPA 8270

Date Analyzed: 7/15/99

Sample Description	Matrix	Sampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
29SLB05089	SL	SL 6/1/99		6/7/99	PMM	SW3550	KRT
Compound	Re	sult Unit	s DF	Sample PQL	Method PQL		
NAPHTHALENE	76	00 ug/Kg	21	6900	330		
2-METHYLNAPHTHALENE	450	000 ug/Kg	21	6900	330		
ACENAPHTHYLENE	<69	900 ug/Kg	21	6900	330		
ACENAPHTHENE	<69	900 ug/Kg	21	6900	330		
FLUORENE	80	00 ug/Kg	21	6900	330		
PHENANTHRENE	110	000 ug/Kg	21	6900	330		
ANTHRACENE	<69	900 ug/Kg	21	6900	330		
FLUORANTHENE	<6	900 ug/Kg	21	6900	330		
PYRENE	<69	900 ug/Kg	21	6900	330		
ENZO[A]ANTHRACENE	<69	900 ug/Kg	21	6900	330		
CHRYSENE	<69	900 ug/Kg	21	6900	330		
BENZO[B]FLUORANTHENE	<69	900 ug/Kg	21	6900	330		
BENZO[K]FLUORANTHENE	<69	900 ug/Kg	21	6900	330		
BENZO[A]PYRENE	<69	900 ug/Kg	21	6900	330		
INDENO[1,2,3-CD]PYRENE	<69	900 ug/Kg	21	6900	330		
DIBENZ[A,H]ANTHRACENE	<69	900 ug/Kg	21	6900	330		
BENZO[G,H,I]PERYLENE	<69	900 ug/Kg	21	6900	330		
NITROBENZENE-D5	D	L %	21				
2-FLUOROBIPHENYL	D	L %	21				
TERPHENYL-D14	D	L %	21				

- --- Report Notes:

O-1, DL

Client: Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

Report Date:

WP2703-3

SDG:

WP2703 7/27/99

PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

93

Method:

EPA 8270

Date Analyzed: 7/14/99

Sample Description	Matrix Sar	npled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
29SLB050809D	SL 6/1/99		6/2/99	6/7/99 Sample PQt.	PMM Method PQL	SW3550	KRT
Compound	Result Units		DF				
NAPHTHALENE	2800	ug/Kg	1.1	360	330		
2-METHYLNAPHTHALENE	E14000	ug/Kg	1.1	360	330		
ACENAPHTHYLENE	<360	ug/Kg	1.1	360	330		
ACENAPHTHENE	880	ug/Kg	1,1	360	330		
FLUORENE	2300	ug/Kg	1.1	360	330		
PHENANTHRENE	4400	ug/Kg	1.1	360	330		
ANTHRACENE	<360	ug/Kg	1.1	360	330		
FLUORANTHENE	<360	ug/Kg	1.1	360	330		
PYRENE	J200	ug/Kg	1.1	360	330		
BENZO[A]ANTHRACENE	<360	ug/Kg	1.1	360	330		
CHRYSENE	<360	ug/Kg	1.1	360	330		
BENZO[B]FLUORANTHENE	<360	ug/Kg	1.1	360	330		
BENZO[K]FLUORANTHENE	<360	ug/Kg	1.1	360	330		
BENZO[A]PYRENE	<360	ug/Kg	1.1	360	330		
INDENO[1,2,3-CD]PYRENE	<360	ug/Kg	1.1	360	330		
DIBENZĮA,HJANTHRACENE	<360	ug/Kg	1.1	360	330		
BENZO[G,H,I]PERYLENE	<360	ug/Kg	1.1	360	330		
NITROBENZENE-D5	#153	%	1.1				
2-FLUOROBIPHENYL	57	%	1.1				
TERPHENYL-D14	70	%	1.1				

Report Notes:

J, E,#

٠,

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2703-3DL

SDG:

WP2703

Report Date:

7/27/99

PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

93

Method:

EPA 8270

Date Analyzed: 7/14/99

Sample Description	Matrix	Samp	led Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
29SL8050809D	SL	6/	1/99	6/2/99	6/7/99	РММ	SW3550	KRT
	D.	esult	Units	DF	Sample PQL	Method PQL		
Compound .		esuit	Units	- OF	FUL	ruit		
NAPHTHALENE	2	600	ug/Kg	5.4	1800	330		
2-METHYLNAPHTHALENE	17	7000	ug/Kg	5.4	1800	330		
ACENAPHTHYLENE	J	940	ug/Kg	5.4	1800	330		
ACENAPHTHENE	<1	1800	ug/Kg	5.4	1800	330		
FLUORENE	3	700	ug/Kg	√ 5.4	1800	330		
PHENANTHRENE	5	600	ug/Kg	5.4	1800	330		
ANTHRACENE	<1	1800	ug/Kg	5.4	1800	330		
FLUORANTHENE	<	1800	ug/Kg	5.4	1800	330		
YRENE	<	1800	ug/Kg	5.4	1800	330		
JENZO[A]ANTHRACENE	<	1800	ug/Kg	5.4	1800	330		
CHRYSENE	<1	1800	ug/Kg	5.4	1800	330		
BENZO[B]FLUORANTHENE	<1	1800	ug/Kg	5.4	1800	330		
BENZOĮKJFLUORANTHENE	<1	1800	ug/Kg	5.4	1800	330		
BENZO[A]PYRENE	<	1800	ug/Kg	5.4	1800	330		
NDENO[1,2,3-CD]PYRENE	<1	1800	ug/Kg	5.4	1800	330		
DIBENZ[A,H]ANTHRACENE	<	1800	ug/Kg	5.4	1800	330		
BENZO[G,H,I]PERYLENE	<	1800	ug/Kg	5.4	1800	330		
NITROBENZENE-D5	1	109	%	5.4				
2-FLUOROBIPHENYL	1	801	%	5.4				
TERPHENYL-D14		79	%	5.4				

"Report Notes:

J, O-2

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2703-5

SDG:

WP2703 7/27/99

Report Date: PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

91

Method:

EPA 8270

Date Analyzed: 7/14/99

Sample Description	Matrix Sampled Date SL 6/1/99		Rec'd Date 6/2/99	6/7/99	Ext'd By	Ext. Method	Analyst
29SLB070708					РММ	SW3550	KRT
Compound	Res	ult Units	DF	Sample PQL	Method PQL		
NAPHTHALENE	<36	60 ug/Kg	1.1	360	330		
2-METHYLNAPHTHALENE	<36	50 ug/Kg	1.1	360	330		
ACENAPHTHYLENE	<36	60 ug/Kg	1.1	360	330		
ACENAPHTHENE	<36	60 ug/Kg	1.1	360	330		
FLUORENE	<36	50 ug/Kg	1.1	360	330		
PHENANTHRENE	<36	60 ug/Kg	1.1	360	330		
ANTHRACENE	<36	60 ug/Kg	1.1	360	330		
FLUORANTHENE	<36	60 ug/Kg	1.1	360	330		
PYRENE	<36	50 ug/Kg	1.1	360	330		
BENZO[A]ANTHRACENE	<36	0 ug/Kg	1.1	360	330		
CHRYSENE	<36	30 ug/Kg	1.1	360	330		
BENZO[B]FLUORANTHENE	<36	60 ug/Kg	1.1	360	330		
BENZO[K]FLUORANTHENE	<36	30 ug/Kg	1.1	360	330		
BENZO[A]PYRENE	<3€	30 ug/Kg	1.1	360	330		
INDENO{1,2,3-CD]PYRENE	<36	60 ug/Kg	1.1	360	330		
DIBENZ[A,H]ANTHRACENE	<36	60 ug/Kg	1.1	360	330		
BENZO[G,H,I]PERYLENE	<36	60 ug/Kg	1.1	360	330		
NITROBENZENE-D5	54	1 %	1,1				
2-FLUOROBIPHENYL	67	7 %	1.1				
TERPHENYL-D14	86	s %	1.1				

`lient:

Paul Calligan

Tetra Tech NUS

1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2703-6

SDG:

WP2703 7/27/99

Report Date: PO No.:

N7912-P99264

CTO #68

Project: % Solids:

94

Method:

EPA 8270

Date Analyzed: 7/14/99

Sample Description	Matrix S	Sampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
29SLB110708	SL 6/1/99		6/2/99	6/7/99	РММ	SW3550	KRT
Сотроили	Resu	lt Units	DF	Sample PQL	Method PQL		
NAPHTHALENE	<330	ug/Kg	1.0	330	330		-
2-METHYLNAPHTHALENE	<330	ug/Kg	1.0	330	330		
ACENAPHTHYLENE	<330	ug/Kg	1.0	330	330		
ACENAPHTHENE	<330	ug/Kg	1.0	330	330		
FLUORENE	<330	ug/Kg	1.0	330	330		
PHENANTHRENE	<330	ug/Kg	1.0	330	330		
ANTHRACENE	<330	ug/Kg	1.0	330	330		
FLUORANTHENE	<330	ug/Kg	1.0	330	330		
TYRENE	<330	ug/Kg	1.0	330	330		
_£NZO[A]ANTHRACENE	<330) ug/Kg	1.0	330	330		
CHRYSENE	<330	ug/Kg	1.0	330	330		
BENZO[B]FLUORANTHENE	<330	ug/Kg	1.0	330	330		
BENZO[K]FLUORANTHENE	<330	ug/Kg	1.0	330	330		
BENZO[A]PYRENE	<330	ug/Kg	1.0	330	330		
INDENO[1,2,3-CD]PYRENE	<330	ug/Kg	1.0	330	330		
DIBENZ[A,H]ANTHRACENE	<330	ug/Kg	1.0	330	330		
BENZO[G,H,I]PERYLENE	<330	ug/Kg	1.0	330	330		
NITROBENZENE-D5	30	%	1.0				
2-FLUOROBIPHENYL	55	%	1.0				
TERPHENYL-D14	103	%	1.0				

*****Řeport Notes:

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2703-7

SDG:

WP2703

Report Date:

7/27/99

PO No.:

N7912-P99264

Project: % Solids: CTO #68 92

Method:

EPA 8270

Date Analyzed: 7/14/99

Sample Description	Matrix S	ampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
29SLB120708	SL	SL 6/1/99		6/7/99	РММ	SW3550	KRT
Compound	Resu	t Units	DF	Sample PQL	Method PQL		
NAPHTHALENE	<360	ug/Kg	1.1	360	330		
2-METHYLNAPHTHALENE	<360	ug/Kg	1.1	360	330		
ACENAPHTHYLENE	<360	ug/Kg	1.1	360	330		
ACENAPHTHENE	<360	ug/Kg	1.1	360	330		
FLUORENE	<360	ug/Kg	1.1	360	330		
PHENANTHRENE	<360	ug/Kg	1.1	360	330		
ANTHRACENE	<360	ug/Kg	1.1	360	330		
FLUORANTHENE	<360	ug/Kg	1.1	360	330		
PYRE NÉ	<360	ug/Kg	1.1	360	330		
BENZO[A]ANTHRACENE	<360	ug/Kg	1.1	360	330		
CHRYSENE	<360	ug/Kg	1.1	360	330		
BENZO[B]FLUORANTHENE	<360	ug/Kg	1.1	360	330		
BENZO[K]FLUORANTHENE	<360	ug/Kg	1.1	360	330		
BENZO[A]PYRENE	<360	ug/Kg	1.1	360	330		
INDENO[1,2,3-CD]PYRENE	<360	ug/Kg	1.1	360	330		
DIBENZ[A,H]ANTHRACENE	<360	ug/Kg	1.1	360	330		
BENZO[G,H,I]PERYLENE	<360	ug/Kg	1.1	360	330		
NITROBENZENE-D5	36	%	1.1				
2-FLUOROBIPHENYL	56	%	1.1				
TERPHENYL-D14	68	%	1,1				

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

SDG:

WP2703-8 WP2703

Report Date:

7/27/99

PO No.:

N7912-P99264 CTO #68

Project: % Solids:

N/A

Method:

EPA 8270

Date Analyzed: 7/12/99

Sample Description	Matrix S	Sampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
29E00301	AQ 6/1/99		6/2/99	6/5/99	РММ	SW3510	KRT
Compound	Resu	it Units	DF	Sample PQL	Method PQL		
NAPHTHALENE	<10	ug/L	1,0	10	10		
2-METHYLNAPHTHALENE	<10	ug/L	1.0	10	10		
ACENAPHTHYLENE	<10	ug/L	1.0	10	10		
ACENAPHTHENE	<10	ug/L	1.0	10	10		
FLUORENE	<10	ug/L	1.0	10	10		
PHENANTHRENE	<10	ug/L	1.0	10	10		
ANTHRACENE	<10	ug/L	1.0	10	10		
FLUORANTHENE	<10	ug/L	1.0	10	10		
JPYRENE	<10	ug/L	1.0	10	10		
ENZO[A]ANTHRACENE	<10	ug/L	1.0	10	10		
*ÉHRYSENE	<10	ug/L	1.0	10	10		
BENZO[B]FLUORANTHENE	<10	ug/L	1.0	10	10		
BENZO[K]FLUORANTHENE	<10	ug/L	1.0	10	10		
BENZO[A]PYRENE	<10	ug/L	1.0	10	10		
INDENO[1,2,3-CD]PYRENE	<10	ug/L	1.0	10	10		
DIBENZ[A,H]ANTHRACENE	<10	ug/L	1.0	10	10		
BENZO[G,H,I]PERYLENE	<10	ug/L	1.0	10	10		
NITROBENZENE-D5	68	%	1.0				
2-FLUOROBIPHENYL	69	%	1.0				
TERPHENYL-D14	78	%	1.0				

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2703-9

SDG:

WP2703 7/27/99

Report Date: PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

N/A

Method:

EPA 8270

Date Analyzed: 7/12/99

Sample Description	Matrix	Sampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
29F00301	AQ	AQ 6/1/99		6/5/99	PMM	SW3510	KRT
Compound	Resi	ult Units	DF	Sample PQL	Method PQL		
NAPHTHALENE	<10	ug/L	1.0	10	10		
2-METHYLNAPHTHALENE	<10	ug/L	1.0	10	10		
ACENAPHTHYLENE	<10) ug/L	1.0	10	10		
ACENAPHTHENE	<10	ug/L	1.0	10	10		
FLUORENE	<10	ug/L	1.0	10	10		
PHENANTHRENE	<10	ug/L	1.0	10	10		
ANTHRACENE	<10	ug/L	1.0	10	10		
FLUORANTHENE	<10	ug/L	1.0	10	10		
PYRENE	<10	ug/L	1.0	10	10		
BENZO[A]ANTHRACENE	<10	ug/L	1.0	10	10		
CHRYSENE	<10	ug/L	1.0	10	10		
BENZO[B]FLUORANTHENE	<10	ug/L	1.0	10	10		
BENZO[K]FLUORANTHENE	<10	ug/L	1.0	10	10		
BENZO[A]PYRENE	<10	ug/L	1.0	10	10		
INDENO[1,2,3-CD]PYRENE	<10	ug/L	1.0	10	10		
DIBENZ[A,H]ANTHRACENE	<10	ug/L	1.0	10	10		
BENZO[G,H,I]PERYLENE	<10	ug/L	1.0	10	10		
NITROBENZENE-D5	48	%	1.0				
2-FLUOROBIPHENYL	53	%	1.0				
TERPHENYL-D14	65	%	1.0				

≎lient:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2703-10

SDG:

WP2703

Report Date:

7/27/99

PO No.:

N7912-P99264

Project: % Solids: CTO #68

Method:

93

Date Analyzed:

EPA 8270

Date	Allalyz	eu.	"	0/99

Sample Description	Matrix	Samp	oled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
	SL 6/1/99		6/2/99	6/7/99	РММ	SW3550	KRT	
Compound	Re	suit	Units	DF	Sample PQL	Method PQL		
NAPHTHALENE	<	360	ug/Kg	1.1	360	330		
2-METHYLNAPHTHALENE	<3	60	ug/Kg	1.1	360	330		
ACENAPHTHYLENE	<3	360	ug/Kg	1.1	360	330		
ACENAPHTHENE	<3	360	ug/Kg	1.1	360	330		
FLUORENE	<3	60	ug/Kg	1.1	360	330		
PHENANTHRENE	<3	60	ug/Kg	1.1	360	330		
ANTHRACENE	<3	860	ug/Kg	1.1	360	330		
FLUORANTHENE	<3	60	ug/Kg	1.1	360	330		
PYRENE	<3	60	ug/Kg	1.1	360	330		
ENZO[A]ANTHRACENE	<3	360	ug/Kg	1.1	360	330		
CHRYSENE	<3	60	ug/Kg	1,1	360	330		
BENZO[B]FLUORANTHENE	<3	60	ug/Kg	1.1	360	330		
BENZOKIJFLUORANTHENE	<3	60	ug/Kg	1.1	360	330		
BENZO[A]PYRENE	<3	60	ug/Kg	1.1	360	330		
INDENO[1,2,3-CD]PYRENE	<3	360	ug/Kg	1.1	360	330		
DIBENZ[A,H]ANTHRACENE	<3	60	ug/Kg	1.1	360	330		
BENZO[G,H,I]PERYLENE	<3	60	ug/Kg	1.1	360	330		
NITROBENZENE-D5	5	5	%	1.1				
2-FLUOROBIPHENYL	7	2	%	1,1				
TERPHENYL-D14	8	Ю	%	1.1				

KATAHDIN ANALYTICAL SERVICES Summary of Report Notes

Report Note	Note Text
#	# flag denotes surrogate compound recovery is out of criteria.
DL	'DL' flag denotes inability to calculate surrogate recovery due to sample dilution.
E	'E' flag indicates an estimated value. The analyte was detected in the sample at a concentration greater than the standard calibration range.
J	'J' flag denotes an estimated value less than the Laboratory's Practical Quantitation Level.
0-1	Sample dilution required due to matrix interference, sample viscosity or other matrix-related problem; therefore, standard laboratory Practical Quantitation Level (PQL) could not be achieved.
0-2	Sample dilution required for quantitation of one or more target analytes; therefore, standard laboratory Practical Quantitation Level (PQL) could not be achieved.

2A

ATER SEMIVOLATILE SYSTEM MONITORING COMPOUND RECOVER

Lab Name: Katahdin Analytical Services

SDG No.: WP2703

Matrix:

WATER

Client Sample ID	Lab Sample ID	SMC1 (NBZ) #	SMC2 (FBP) #	SMC3 (TPH) #	Total Out
SBLK;060599	SBLK;060599	81	84	79	0
29E00301	WP2703-8	68	69	78	0
29F00301	WP2703-9	48	53	65	0
LCS;060599	LCS;060599	91	76	6 6	0

QC LIMITS

SMC1	(NBZ)	=	NITROBENZENE-D5	(36-117)
SMC2	(FBP)	=	2-FLUOROBIPHENYL	(47-114)
SMC3	(TPH)	=	TERPHENYL-D14	(35-126)

Column to be used to flag recovery value

* Values are outside of QC limits

Page 1 of 1

FORM II SVOA-1

2A SOIL SEMIVOLATILE SYSTEM MONITORING COMPOUND RECOVERY

Lab Name: Katahdin Analytical Services

SDG No.: WP2703

Matrix: SOIL

Client Sample ID	Lab Sample ID	SMC1 (NBZ)#	SMC2 (FBP) #	SMC3 (TPH) #	Total Out
SBLK;060799	SBLK;060799	69	75	82	0
LCS;060799	LCS;060799	73	75	82	0
29SLB040708	WP2703-1	57	65	90	0
29SLB050809D	WP2703-3	153*	57	70	1
29SLB070708	WP2703-5	54	67	86	0
29SLB110708	WP2703-6	30	55	103	0
29SLB120708	WP2703-7	36	56	88	0
29SLB050809DDL	WP2703-3DL	110*	108	79	1
29SLB05089	WP2703-2	DL	DL	DL	0
29SLB060809	WP2703-10	55	72	80	0
29SLB060809MS	WP2703-10MS	59	66	70	0
29SLB060809MSD	WP2703-10MSD	60	63	67	0

QC LIMITS

SMC1	(NBZ)	=	NITROBENZENE-D5	(14-107)
SMC2	(FBP)	=	2-FLUOROBIPHENYL	(32-109)
SMC3	(TPH)	=	TERPHENYL-D14	(26-116)

Column to be used to flag recovery value

* Values are outside of QC limits

Page 1 of 1

FORM II SVOA-1

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

SBLK;060599

SDG:

WP2703

Report Date:

7/27/99

PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

N/A

Method:

EPA 8270

Date Analyzed: 7/12/99

Sample Description	Matrix S	Sampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
SBLK;060599	AQ	•	•	6/5/99	РММ	SW3510	KRT
Compound	Resu	lt Units	DF	Sample PQL	Method PQL		
NAPHTHALENE	<10	ug/L	1.0	10	10		
2-METHYLNAPHTHALENE	<10	ug/L	1.0	10	10		
ACENAPHTHYLENE	<10	ug/L	1.0	10	10		
ACENAPHTHENE	<10	ug/L	1.0	10	10		
FLUORENE	<10	ug/L	1.0	10	10		
PHENANTHRENE	<10	ug/L	1.0	10	10		
ANTHRACENE	<10	ug/L	1.0	10	10		
FLUORANTHENE	<10	ug/L	1.0	10	10		
PYRENE	<10	ug/L	1.0	10	10		
BENZO[A]ANTHRACENE	<10	ug/L	1.0	10	10		
CHRYSENE	<10	ug/L	1.0	10	10		
BENZO[B]FLUORANTHENE	<10	ug/L	1.0	10	10		
BENZOKIFLUORANTHENE	<10	ug/L	1.0	10	10		
BENZO[A]PYRENE	<10	ug/L	1.0	10	10		
INDENO[1,2,3-CD]PYRENE	<10	ug/L	1.0	10	10		
DIBENZ[A,H]ANTHRACENE	<10		1.0	10	10		
BENZO[G,H,I]PERYLENE	<10	ug/L	1.0	10	10		
NITROBENZENE-D5	81	- %	1.0				
2-FLUOROBIPHENYL	84	%	1.0				
TERPHENYL-D14	79	%	1.0				

--- Report Notes:

Lab File: X2187

Sample ID: LCS;060599

Date Run: 7/13/99

Analyst: KRT

Time Injected 12:33:00 PM

Matrix: AQ

Compound Name	Spike Amt (ug/L)	Result (ug/L)	Rec (%)	Limits (%)		
2-METHYLNAPHTHALENE	50	33.9	•68	70-130		
ACENAPHTHENE	50	41.0	82	70-130		
ACENAPHTHYLENE	50	38.3	77	70-130		
ANTHRACENE	50	40.0	80	70-130		
BENZO[A]ANTHRACENE	50	42.6	85	70-130		
BENZO[A]PYRENE	50	45.4	91	70-130		
BENZO[B]FLUORANTHENE	50	44.2	88	70-130		
BENZO G,H,I PERYLENE	50	50.2	100	70-130		
BENZO[K]FLUORANTHENE	50	44.3	88	70-130		
CHRYSENE	50	41.9	84	70-130		
DIBENZ[A,H]ANTHRACENE	50	50.2	100	70-130		
FLUORANTHENE	50	44.3	89	70-130		
FLUORENE	50	39.3	78	70-130		
INDENO[1,2,3-CD]PYRENE	50	57.7	115	70-130		
NAPHTHALENE	50	47.9	96	70-130		
PHENANTHRENE	50	41.1	82	70-130		
PYRENE	50	40.8	82	70-130		

Lab File: Z1342

Sample ID: LCS;060799

Date Run: 7/12/99

Analyst: KRT

Time Injected 8:41:00 PM

Matrix: SL

Compound Name	Spike Amt (ug/Kg)	Result (ug/Kg)	Rec (%)	Limits (%)
2-METHYLNAPHTHALENE	1667	1300	78	60-140
ACENAPHTHENE	1667	1310	79	60-140
ACENAPHTHYLENE	1667	1250	75	60-140
ANTHRACENE	1667	1270	76	60-140
BENZO[A]ANTHRACENE	1667	1210	73	60-140
BENZO[A]PYRENE	1667	1260	76	60-140
BENZO[B]FLUORANTHENE	1667	1210	72	60-140
BENZO[G,H,I]PERYLENE	1667	1540	92	60-140
BENZO[K]FLUORANTHENE	1667	1380	83	60-140
CHRYSENE	1667	1280	77	60-140
DIBENZ[A,H]ANTHRACENE	1667	1450	87	60-140
FLUORANTHENE	1667	1380	83	60-140
FLUORENE	1667	1380	82	60-140
INDENO[1,2,3-CD]PYRENE	1667	1720	103	60-140
NAPHTHALENE	1667	1250	75	60-140
PHENANTHRENE	1667	1360	82	60-140
PYRENE	1667	1210	72	60-140

Katahdin Analytical Services MS/MSD Report

Sample	File Name	Date Acquired	Time inj	Analyst	Matrix	Method
WP2703-10	Z1396	7/16/99	10:27:00 AM	KRT	SL	8270_99
WP2703-10MS	Z1397	7/16/99	11:13:00 AM	KRT	SL	8270_99
WP2703-10MSD	Z1398	7/16/99	12:00:00 PM	KRT	SL	8270_99

Compound Name	Native (ug/Kg)	MS Spk Amount (ug/Kg)	MSD Spk Amount (ug/Kg)	MS Result (ug/Kg)	MSD Result (ug/Kg)	MS REC (%)	MSD REC (%)	Recovery Limits (%)	RPD (%)	RPD Limit (%)
CHRYSENE	0	1790	1790	1000	958	•56	*54	60-140	4.3	50
ACENAPHTHENE	0	1790	1790	1170	1130	65	63	60-140	3.5	50
ACENAPHTHYLENE	0	1790	1790	1080	1020	60	*57	60-140	5.7	50
ANTHRACENE	0	1790	1790	1080	1030	60	•58	60-140	4.7	50
BENZO[A]ANTHRACENE	0	1790	1790	1080	1060	60	•59	60-140	1.9	50
BENZO[A]PYRENE	0	1790	1790	1080	1030	60	*58	60-140	4.7	50
BENZO[B]FLUORANTHENE	0	1790	1790	1140	1120	64	62	60-140	1.8	50
2-METHYLNAPHTHALENE	0	1790	1790	1170	1180	65	66	60-140	0.85	50
BENZO[K]FLUORANTHENE	0	1790	1790	1090	1100	61	61	60-140	0.91	50
PYRENE	0	1790	1790	1120	1070	63	60	60-140	4.6	50
DIBENZ[A,H]ANTHRACENE	0	1790	1790	1050	964	*59	*54	60-140	8.5	50
FLUORANTHENE	0	1790	1790	1040	1010	•58	*57	60-140	2.9	50
FLUORENE	0	1790	1790	1190	1150	67	64	60-140	3.4	50
INDENO[1,2,3-CD]PYRENE	0	1790	1790	1090	857	61	•48	60-140	24	50
NAPHTHALENE	0	1790	1790	1100	1110	62	62	60-140	0.90	· '
PHENANTHRENE	0	1790	1790	1270	1220	71	68	60-140	4.0	-3
BENZO[G,H,I]PERYLENE	0	1790	1790	1080	962	60	•54	60-140	12	50

Tetra Tech NUS

1401 Oven Park Dr., Suite 102

Tallahassee, FL 32308

Lab Number: WP-2703-1 Report Date: 07/28/99

PO No. Project

: CTO #68

: N7912-P99264

WIC#: ONC CHARLESTON

REPORT OF ANALYTICAL RESULTS

Page 1 of 7

SAMPLE DESCRIPTION		MATRIX			SAMPLED BY			SAMPLED DATE RECEIVED		
29SLB040708	Solid		J. HILL			06/01/99		06/02/99		
PARAMETER	RESULT	UNITS	DF	*PQL	METHOD	A	NALYZED	BY	NOTES	
Solids-Total Residue (TS)	92.	wt %	1.0	0.10	CTb/CIb	SOW 0	6/04/99	JF	1	

^{*} PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect sample-specific reporting limits. Sample-specific limits are indicated by results annotated with '<' values.

(1) Sample Preparation on 06/03/99 by JF

07/28/99

LJO/baeajc(dw)/msm PF03TSS6 CC: MS. LEE LECK TETRA TECH NUS FOSTER PLAZA 7 661 ANDERSEN DR.

Tetra Tech NUS

1401 Oven Park Dr., Suite 102

Tallahassee, FL 32308

Lab Number : WP-2703-2 Report Date: 07/28/99

PO No. : N791

: N7912-P99264

Project : CTO #68

WIC#: CNC CHARLESTON

REPORT OF ANALYTICAL RESULTS

Page 2 of 7

SAMPLE DESCRIPTION	ON MATRIX			SAMPI	ED BY	SAMPLED D	SAMPLED DATE RECEIVED		
29SLB05089	Solid			J. HI	J. HILL		06/01/99		
PARAMETER	RESULT	UNITS	DF	*PQL	METHOD	ANALYZED	BY	NOTES	
Solids-Total Residue (TS)	93.	wt %	1.0	0.10	CLP/CIP	SOW 06/04/99	JF	1	

^{*} PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect sample-specific reporting limits. Sample-specific limits are indicated by results annotated with '<' values. (1) Sample Preparation on 06/03/99 by JF

07/28/99

LJO/baeajc(dw)/msm PF03TSS6

CC: MS. LEE LECK
TEIRA TECH NUS
FOSTER PLAZA 7
661 ANDERSEN DR.

Tetra Tech NUS

1401 Oven Park Dr., Suite 102

Tallahassee, FL 32308

Lab Number : WP-2703-3 Report Date: 07/28/99

PO No.

: N7912-P99264

Project

: CTO #68

WIC#: CNC CHARLESTON

REPORT OF ANALYTICAL RESULTS

Page 3 of 7

SAMPLE DESCRIPTION	MATRIX			SAMPLI	ED BY	SAMPLED D	SAMPLED DATE RECEIVED		
29SLB050809D	Solid J		J. HI	LL	06/01/9	06/01/99			
PARAMETER	RESULT	UNITS	DF	*PQL	METHOD	ANALYZED	BY	NOTES	
Solids-Total Residue (TS)	93.	wt 8	1.0	0.10	CLP/CIP SO	OW 06/04/99	JF	1	

^{*} PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect sample-specific reporting limits. Sample-specific limits are indicated by results annotated with '<' values.

(1) Sample Preparation on 06/03/99 by JF

07/28/99

LJO/baeajc(dw)/msm PF03TSS6

CC: MS. LEE LECK
TETRA TECH NUS
FOSTER PLAZA 7
661 ANDERSEN DR.

Tetra Tech NUS

1401 Oven Park Dr., Suite 102

Tallahassee, FL 32308

Lab Number: WP-2703-5

Report Date: 07/28/99

PO No. :

: N7912-P99264

Project

: CTO #68

WIC#: CNC CHARLESTON

REPORT OF ANALYTICAL RESULTS

Page 4 of 7

SAMPLE DESCRIPTION		MATRIX		SAMPL	ED BY	SAMPLED I	ATE	RECEIVED
29SLB070708		Solid		J. HI	LL	06/01/9	9	06/02/99
PARAMETER	RESULT	UNITS	DF	*PQL	METHOD	ANALYZED	BY	NOTES
Solids-Total Residue (TS)	91.	wt &	1.0	0.10	CLP/CIP	SOW 06/04/99	JF	1

^{*} PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect sample-specific reporting limits. Sample-specific limits are indicated by results annotated with '<' values.

(1) Sample Preparation on 06/03/99 by JF

07/28/99

LJO/baeajc(dw)/msm PF03TSS6

CC: MS. LEE LECK
TEIRA TECH NUS
FOSTER PLAZA 7
661 ANDERSEN DR.

Tetra Tech NUS

1401 Oven Park Dr., Suite 102

Tallahassee, FL 32308

Lab Number: WP-2703-6

Report Date: 07/28/99

: N7912-P99264 Project : CTO #68

PO No.

WIC#: CNC CHARLESTON

REPORT OF ANALYTICAL RESULTS

Page 5 of 7

SAMPLE DESCRIPTION		MATRIX		SAMPL	ED BY	SAMPLED D	ATE	RECEIVED
29SLB110708		Solid		J. HI	ΪΙ	06/01/9	9	06/02/99
PARAMETER	RESULT	UNITS	DF	*PQL	METHOD	ANALYZED	BY	NOTES
Solids-Total Residue (TS)	94.	wt %	i.o	0.10	CLP/CIP	SOW 06/04/99	JF	1

^{*} PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect samplespecific reporting limits. Sample-specific limits are indicated by results annotated with '<' values. (1) Sample Preparation on 06/03/99 by JF

07/28/99

LJO/baeajc (dw) /msm PF03TSS6

CC: MS. LEE LECK TETRA TECH NUS FOSTER PLAZA 7 661 ANDERSEN DR.

Tetra Tech NUS

1401 Oven Park Dr., Suite 102

Tallahassee, FL 32308

Lab Number: WP-2703-7

Report Date: 07/28/99

PO No. : N7912-P99264 Project : CTO #68

WIC#: CNC CHARLESTON

REPORT OF ANALYTICAL RESULTS

Page 6 of 7

SAMPLE DESCRIPTION		MATRIX		SAMPLE	ED BY	SAMPLED D	ATE	RECEIVED
29SLB120708	Solid			J. HII	06/01/9	06/02/99		
PARAMETER	RESULT	UNITS	DF	*PQL	METHOD	ANALYZED	BY	NOTES
Solids-Total Residue (TS)	93.	wt %	1.0	0.10	CLP/CIP SOW	06/04/99	JF	1

^{*} PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect sample-specific reporting limits. Sample-specific limits are indicated by results annotated with '<' values.

(1) Sample Preparation on 06/03/99 by JF

07/28/99

LJO/baeajc(dw)/msm PF03TSS6

CC: MS. LEE LECK TETRA TECH NUS FOSTER PLAZA 7

Tetra Tech NUS

1401 Oven Park Dr., Suite 102

Tallahassee, FL 32308

Lab Number : WP-2703-10

Report Date: 07/28/99

PO No. : N7912-P99264

Project : CTO #68

WIC#: CNC CHARLESTON

REPORT OF ANALYTICAL RESULTS

Page 7 of 7

SAMPLE DESCRIPTION		MATRIX		SAMP	LED BY	SAMPLED D	ATE	RECEIVED
29SLB060809		Solid		J. H	IIT	06/01/9	9	06/02/99
PARAMETER	RESULT	UNITS	DF	*PQL	METHOD	ANALYZED	BY	NOTES
Solids-Total Residue (TS) Total Combustible Organics	93. 2.7	wt % wt %	1.0		CLP/CIP SOW ASIM D2974-8			1

^{*} PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect sample-specific reporting limits. Sample-specific limits are indicated by results annotated with '<' values.

(1) Sample Preparation on 06/04/99 by JF

07/28/99

LJO/baeajc(dw)/msm PF04TSS1

CC: MS. LEE LECK TETRA TECH NUS FOSTER PLAZA 7

Method Blank and Laboratory Control Sample Results

Client:	Tetra Tech NUS	
Work Order:	WP2703	

METHOD BLANK RESULTS

LABORATORY CONTROL SAMPLE RESULTS

	Date	Date		Con	centration		Practical		True	Measured	Percent	Acceptance	Acceptance		
	of	of	Units	M	leasured	Acceptance	Quantitation	Units	Value	Value	Recovered	Range	Range		
Parameter	Prep	Analysis		iı	n Blank	Range	Level**					(%)	(mg/kg)		
TS -Total Residue	03-Jun-99	04-Jun-99	wt %	<	0.10 <	0.10	0.10	wt %	90	89.9	99.9	80-120			
	04-Jun-99	07-Jun-99	wt %	<	0.10 <	0.10	0.10	wt %			NA	80-120			
TCO	04-Jun-99	07-Jun-99	wt %	<	0.10 <	0.10	0.10	wt %			NA	80-120			

^{**} Practical quantitation level is the lowest concentration measurable for samples with normal chemical and physical composition during routine laboratory operations.

DATA QUALITY COMMENTS:

Results of all quality control measurements are within the laboratory and method specified acceptance range except as noted.

Duplicate and Matrix Spike/Matrix Spike Duplicate Results

Client:	Tetra Tech NUS		
Work Order:	WP2703		

DUPLICATE RESULTS

MATRIX SPIKE/MATRIX SPIKE DUPLICATE RESULTS

DOT MONTE TOO DIE								WITHOUT OF TRESIDENT RESIDENCE RESIDENCE									
	Sample					Acceptance	e Concentration or Quantity Matrix Spike Recovery (%)										
			Measure	ements	Mean		Range	Units Sar	npl S	Spike	Sample	Sample	Sample	Sample	Acceptance	RPD	Acceptance
Parameter	Sample No	Units	Rep 1	Rep 2	Conc	RPD	for RPD	O 1	nly A	Added	+Spike	+Spike	+Spike	+Spike	Range	(%)	Range
						(%)	(%)				Dup 1	Dup 2	Dup 1	Dup 2	(%)		(%)
TS	WP2703-1	wt%	92.2	92.8	92.5	0.6	0-20	MS/MSD	Not A	pplica	ble for t	his Para	meter				
	WP2703-10	wt%	92.7	92.9	92.8	0.2	0-20	MS/MSD	Not A	pplica	ble for t	his Para	neter				
TCO	WP2703-10	wt%	2.66	2.68	2.67	0.7	0-20	MS/MSD	Not A	pplica	ble for t	his Parai	neter				

RPD = Relative percent difference, which is the absolute value of the difference between two replicate results divided by the mean concentration then multiplied by 100%.

DATA QUALITY COMMENTS:

Results of all quality control measurements are within the laboratory or contract specified acceptance range except as noted. The laboratory does not use the sample duplicate and matrix spike acceptance ranges as acceptance criteria for a specific analysis. Sample duplicate and matrix spike data are used to evaluate method performance in the environmental sample matrix only. Please refer to LCS data for assessment of quality control for each parameter.

Katahdin Analytical

340 County Road

Westbrook, Maine 04092

Contact:

Ms. Andrea Colby

Project Description:

Former Naval Complex

cc: KATA00199

Report Date: June 22, 1999

Page 1 of 1

Sample ID	: 29SLB060809
Lab ID	. 9906058- 01
Matrix	Soil
Date Collected	: 06/01/99
Date Received	: 06/01/99
Priority	: Routine
Collector	: Client

Parameter	Qualifier	Result	DL	RL	Units	DF	Anal	yst Date	Time	Batch 1	М
General Chemistry											
Evaporative Loss @	105 C	8.00	1.00	1.00	wt%	1.0	G٤	06/03/99	1500	150650	1
Total Organic Carb	on	6780	43.1	100	mg/kg	1.0	LS	06/18/99	1725	150724	2

M = Method	Method-Description	
M 1	EPA 3550	
M 2	SW846 9060 Modified	

Notes:

The qualifiers in this report are defined as follows:

ND indicates that the analyte was not detected at a concentration greater than the detection limit.

J indicates presence of analyte at a concentration less than the reporting limit (RL) and greater than the detection limit (DL).

U indicates that the analyte was not detected at a concentration greater than the detection limit.

Data reported in mass/mass units is reported as 'dry weight'.

This data report has been prepared and reviewed in accordance with General Engineering Laboratories standard operating procedures. Please direct

any questions to your Project Manager, Valerie Davis at (843) 769-7391.

Reviewed By

#000E0 01 #

^{*} indicates that a quality control analyte recovery is outside of specified acceptance criteria.

Katahdin Analytical

340 County Road

Westbrook, Maine 04092

Contact:

Ms. Andrea Colby

Project Description:

Former Naval Complex

cc: KATA00199

Report Date: June 22, 1999

Page 1 of 1

Sample ID Lab ID : 14SLB020203 : 9906097-01

Matrix Date Collected

: Soil : 06/02/99

Date Received Priority : 06/02/99 : Routine

Collector : Client

Parameter	Qualifier	Result	DL	RL	Units	DF	Analy	st Date	Time	Batch M
General Chemistry										
Total Rec. Petro. Hyd	drocarbons	785	66.0	132	mg/kg	1.0	AAT	06/22/99	0950	151686 I
Evaporative Loss @	105 C	24.0	1.00	1.00	wt%	1.0	GJ	06/03/99	1500	150650 2

M = Method	Method-Description	
M 1	SW846 9071A	
M 2	EPA 3550	

Notes:

The qualifiers in this report are defined as follows:

ND indicates that the analyte was not detected at a concentration greater than the detection limit.

J indicates presence of analyte at a concentration less than the reporting limit (RL) and greater than the detection limit (DL).

U indicates that the analyte was not detected at a concentration greater than the detection limit.

Data reported in mass/mass units is reported as 'dry weight'.

This data report has been prepared and reviewed in accordance with General Engineering Laboratories standard operating procedures. Please direct

any questions to your Project Manager, Valerie Davis at (843) 769-7391.

Reviewed By

^{*} indicates that a quality control analyte recovery is outside of specified acceptance criteria.

Katahdin Analytical

340 County Road

Westbrook, Maine 04092

Contact:

Ms. Andrea Colby

Project Description:

Former Naval Complex

cc: KATA00199

Report Date: June 22, 1999

Page 1 of 1

Sample ID Lab ID Matrix : 14SLB020203D : 9906097-02

Matrix
Date Collected
Date Received

: Soil : 06/02/99 : 06/02/99

Date Received Priority Collector

: Routine

Parameter	Qualifier	Result	DL	RL	Units	DF	Analy	st Date	Time	Batch	M
General Chemistry		-									
Total Rec. Petro. H	ydrocarbons	321	59.5	119	mg/kg	1.0	AAT	06/22/99	0950	151686	i
Evaporative Loss @	⊉ 105 C	16.0	1.00	1.00	wt%	1.0	GJ	06/03/99	1500	150650	2

M = Method	Method-Description	
M 1 M 2	SW846 9071A EPA 3550	

Notes:

The qualifiers in this report are defined as follows;

ND indicates that the analyte was not detected at a concentration greater than the detection limit.

J indicates presence of analyte at a concentration less than the reporting limit (RL) and greater than the detection limit (DL).

U indicates that the analyte was not detected at a concentration greater than the detection limit.

Data reported in mass/mass units is reported as 'dry weight'.

This data report has been prepared and reviewed in accordance with General Engineering Laboratories standard operating procedures. Please direct

any questions to your Project Manager, Valerie Davis at (843) 769-7391.

Reviewed By

^{*} indicates that a quality control analyte recovery is outside of specified acceptance criteria.

Katahdin Analytical

340 County Road

Westbrook, Maine 04092

Contact:

Ms. Andrea Colby

Project Description:

Former Naval Complex

cc: KATA00199

Report Date: June 22, 1999

: 14SLB050304

: 9906097-03

Page 1 of l

Sample ID
Lab ID
Matrix
Date Collected

Date Received Priority Collector : 06/02/99 : 06/02/99 : Routine : Client

: Soil

Parameter	Qualifier	Result	DL	RL	Units	DF	Ana	lyst Date	Time	Batch M	
General Chemistry											
Evaporative Loss @ 1	05 C	13.0	1.00	1.00	₩t%	1.0	GJ	06/03/99	1500	150650 1	
Total Organic Carbon		11900	43.1	100	mg/kg	1.0	LS	06/18/99	1836	150724 2	

M = Method	Method-Description	
M 1	EPA 3550	-
M 2	SW846 9060 Modified	

Notes:

The qualifiers in this report are defined as follows:

ND indicates that the analyte was not detected at a concentration greater than the detection limit.

J indicates presence of analyte at a concentration less than the reporting limit (RL) and greater than the detection limit (DL).

U indicates that the analyte was not detected at a concentration greater than the detection limit.

Just 97 W

Data reported in mass/mass units is reported as 'dry weight'.

This data report has been prepared and reviewed in accordance with General Engineering Laboratories standard operating procedures. Please direct any questions to your Project Manager, Valerie Davis at (843) 769-7391.

Reviewed By

^{*} indicates that a quality control analyte recovery is outside of specified acceptance criteria.

Katahdin Analytical

340 County Road

Westbrook, Maine 04092

Contact:

Ms. Andrea Colby

Project Description:

Former Naval Complex

cc: KATA00199

Report Date: June 22, 1999

Page 1 of 1

Sample ID

: 15SLB010405 : 9906097-04

Lab ID Matrix

: Soil

Date Collected

: 06/02/99

Date Received

: 06/02/99

Priority

: Routine

Collector

: Client

Parameter	Qualifier	Result	DL	RL	Units	DF	Anal	yst Date	Time	Batch !	M
General Chemistry Evaporative Loss @ 10)	6.00	1.00	1.00	wt%	1.0	GJ	06/03/99	1500	150650	1
Total Organic Carbon		8440	43.1	100	mg/kg	1.0		06/18/99			•

M = Method	Method-Description	
M 1	EPA 3550	
M 2	SW846 9060 Modified	

Notes:

The qualifiers in this report are defined as follows:

ND indicates that the analyte was not detected at a concentration greater than the detection limit.

J indicates presence of analyte at a concentration less than the reporting limit (RL) and greater than the detection limit (DL).

U indicates that the analyte was not detected at a concentration greater than the detection limit.

* indicates that a quality control analyte recovery is outside of specified acceptance criteria.

Jacob A. God

Data reported in mass/mass units is reported as 'dry weight'.

This data report has been prepared and reviewed in accordance with General Engineering Laboratories

standard operating procedures. Please direct

any questions to your Project Manager, Valerie Davis at (843) 769-7391.

Reviewed By

Katahdin Analytical

340 County Road

Westbrook, Maine 04092

Contact:

Ms. Andrea Colby

Project Description:

Former Naval Complex

cc: KATA00199

Report Date: June 22, 1999

Page 1 of 1

 Sample ID
 : 15SLB020405

 Lab ID
 : 9906097-05

 Matrix
 : Soil

 Date Collected
 : 06/02/99

 Date Received
 : 06/02/99

 Priority
 : Routine

 Collector
 : Client

Parameter	Qualifier	Result	DL	RL	Units	DF	Analy	st Date	Time	Batch 1	M
General Chemistry											
Total Rec. Petro. H	ydrocarbons	261	55.5	111	mg/kg	1.0	AAT	06/22/99	0950	151686	l
Evaporative Loss @	9 105 C	10.0	1.00	1.00	wt%	1.0	Gl	06/03/99	1500	150650	2

M = Method	Method-Description	
M i	SW846 9071A	
M 2	EPA 3550	

Notes:

The qualifiers in this report are defined as follows:

ND indicates that the analyte was not detected at a concentration greater than the detection limit.

I indicates presence of analyte at a concentration less than the reporting limit (RL) and greater than the detection limit (DL).

U indicates that the analyte was not detected at a concentration greater than the detection limit.

Jan 9. W

Data reported in mass/mass units is reported as 'dry weight'.

This data report has been prepared and reviewed in accordance with General Engineering Laboratories standard operating procedures. Please direct any questions to your Project Manager, Valerie Davis at (843) 769-7391.

Reviewed By

| 1004 144 110 150 550 550 110 54 104 104 105 105 1

^{*} indicates that a quality control analyte recovery is outside of specified acceptance criteria.

Katahdin Analytical

340 County Road

Westbrook, Maine 04092

Contact:

Ms. Andrea Colby

Project Description:

Former Naval Complex

cc: KATA00199

Report Date: June 22, 1999

Page 1 of 1

Sample ID Lab ID Matrix

: 9906097-06 : Soil

: 15SLB020405D

Date Collected
Date Received

: 06/02/99 : 06/02/99

Priority Collector : Routine : Client

Parameter	Qualifier	Result	DL	RL	Units	DF	Analy	st Date	Time	Batch M
General Chemistry Total Rec. Petro. Hydra Evaporative Loss @ 10		231 9.00	55.0 1.00	110 1.00	mg/kg wt%		AAT GJ	06/22/99		151686 I 1 506 50 2

M = Method	Method-Description	
M 1	SW846 9071A	
M 2	EPA 3550	

Notes:

The qualifiers in this report are defined as follows:

ND indicates that the analyte was not detected at a concentration greater than the detection limit.

I indicates presence of analyte at a concentration less than the reporting limit (RL) and greater than the detection limit (DL).

U indicates that the analyte was not detected at a concentration greater than the detection limit.

Jan 9. Cest

Data reported in mass/mass units is reported as 'dry weight'.

This data report has been prepared and reviewed in accordance with General Engineering Laboratories standard operating procedures. Please direct

any questions to your Project Manager, Valerie Davis at (843) 769-7391.

Reviewed By

^{*} indicates that a quality control analyte recovery is outside of specified acceptance criteria.

Katahdin Analytical

340 County Road

Westbrook, Maine 04092

Contact:

Ms. Andrea Colby

Project Description:

Former Naval Complex

cc: KATA00199

Report Date: June 22, 1999

Page 1 of 1

Sample ID Lab ID Matrix : 29SLB050809 : 9906097-07 : Soil

Date Collected
Date Received

: 06/02/99 : 06/02/99

Priority Collector : Routine : Client

Parameter	Qualifler	Result	DL	RL.	Units	DF	Analy	st Date	Time	Batch	M
General Chemistry			•								
Total Rec. Petro, Hy	drocarbons	9150	54.0	108	mg/kg	1.0	AAT	06/22/99	0950	151686	1
Evaporative Loss @	105 C	7.00	1.00	1.00	wt%	1.0	G J	06/03/99	1500	150650	2

M = Method	Method-Description	 	•••	
M 1	SW846 9071A			
M 2	EPA 3550			

Notes:

The qualifiers in this report are defined as follows:

ND indicates that the analyte was not detected at a concentration greater than the detection limit.

J indicates presence of analyte at a concentration less than the reporting limit (RL) and greater than the detection limit (DL).

U indicates that the analyte was not detected at a concentration greater than the detection limit.

Jul 9 W

Data reported in mass/mass units is reported as 'dry weight'.

This data report has been prepared and reviewed in accordance with General Engineering Laboratories standard operating procedures. Please direct any questions to your Project Manager, Valerie Davis at (843) 769-7391.

Reviewed By

24

^{*} indicates that a quality control analyte recovery is outside of specified acceptance criteria.

QC Summary Report

Project Description:

Former Naval Complex

cc: KATA00199

Lab. Sample ID: 9906097%

Report Date: June 22, 1999

Page 1 of 1

Sample/Parameter Typ	e Batch	NOM	Sample	Qual QC	Units	RPD%	REC%	Range	Analyst	Date	Time
General Chemistry											
QC621595 BLAN	K 151686										
Total Rec. Petro, Hydrocarbor	ış.			0.00	mg/kg				AAT	06/22/99	0950
QC621598 9906097-01DU	P 151686										
Total Rec. Petro. Hydrocarbon	s		783	1020	mg/kg	26.3					
QC621600 9906242-01DU	P 151686										
Total Rec. Petro. Hydrocarbon	s		1560	1910	mg/kg	20.0					
QC621596 LC	S 151686										
Total Rec. Petro, Hydrocarbon	s	11000		9840	mg/kg		89.6	(70.0 - 1)	16.)		
QC621597 9906097-01M											
Total Rec. Petro. Hydrocarbon	2	13200	783	12600	mg/kg		90.0	(70.0 - 1	30.)		
QC621599 9906242-01M	S 151686							,			
Total Rec. Petro. Hydrocarbon	s	12100	1560	13000	mg/kg		94.6	(70.0 - 1	30.)		
QC617634 BLAN	K 150650										
Evaporative Loss @ 105 C				0.00	wt%				GJ	06/03/99	1500
QC617632 9906058-01DU	P 150650										
Evaporative Loss @ 105 C			8.00	8.00	wt%	0.00					
•	K 150724										
Total Organic Carbon				-2.83	mg/kg				LS	06/18/99	1628
QC617935 9906058-01DU	P 150724										
Total Organic Carbon			6780	6830	mg/kg	0.764			LS	06/18/99	1740
_	S 150724			_,,,,							
Total Organic Carbon	,	3750		4420	mg/kg		118	(88.0 -)	(30.) LS	06/18/99	9 1612
OC617936 9906058-01F	S 150724	_,,,			3-6			,			
Total Organic Carbon		10000	6780	16200	mg/kg		94.2	(73.0 - 1	129.) LS	06/18/99	a 1740

Notes:

The qualifiers in this report are defined as follows: I indicates presence of analyte < RL (Report Limit) U indicates presence of analyte < DL (Detect Limit)

n/a indicates that spike recovery limits do not apply when sample concentration exceeds spike conc by a factor of 4 or more

S. W. COLE ENGINEERING, INC.

REPORT OF GRADATION ASTM C-117, C-136

Project No.

99008

Date

06/07/1999

Project

MISCELLANEOUS

Client KATAHDIN ANALYTICAL

Sample No. 21, SAND, WP2703-10

Sieve Size	Percent Passing	PROJECT <u>Specifications</u> %
1/2 "	100.0	
1/4 "	99.6	
# 4	99.6	
# 10	99.4	
# 20	99.1	
# 40	98.8	
# 60	96.1	
<i>#</i> 100	49.0	
# 200	2.2	

SDG NARRATIVE KATAHDIN ANALYTICAL SERVICES TETRA TECH NUS CASE CNC CHARLESTON

Sample Receipt

The following samples were received on June 3, 1999 and were logged in under Katahdin Analytical Services work order number WP2729 for a hardcopy due date of July 3, 1999.

KATAHDIN	TTNUS	GEL
Sample No.	Sample Identification	Sample No.
WP2729-1	14SLB020203	9906097-01
WP2729-2	14SLB020203D	9906097-02
WP2729-3	14SLB060405	
WP2729-4	15SLB020405D	9906097-06
WP2729-5	15SLB040405	
WP2729-6	14SLB040304	
WP2729-7	15SLB020405	9906097-05
WP2729-8	14SLB050304	9906097-03
WP2729-9	15SLB010405	9906097-04
WP2729-10	14TL00401	
WP2729-11	29SLB050809	9906097-07

The samples were logged in for the analyses specified on the chain of custody form. All problems encountered and resolved during sample receipt have been documented on the applicable chain of custody forms.

Sample analyses have been performed by the methods as noted herein.

Volatile Organic Analysis

One aqueous and nine soil samples were received by the Katahdin Analytical Services, Inc. GC/MS laboratory on June 3, 1999 and were specified to be analyzed by USEPA method 8260B for the analytes benzene, toluene, ethylbenzene, xylenes, MTBE, naphthalene, and EDB.

Analyses for this workorder were performed on the 5972-F and 5972-Z instruments. A VSTD050 (50 ppb standard) was used for the continuing calibration standard. Internal standard and surrogate compounds were also spiked at 50 ug/l.

Batch QC (VBLK, and LCS) was performed in each twelve-hour window. Results are included in this data package. The LCS QC samples were spiked with the entire list of compounds quantitated for at 50 ppb. No matrix spike/matrix spike duplicate was performed on any sample in this workorder.

Method 8000B, section 7.5.1.2.1 (Revision 2, 12/96) states, "in those instances where the RSD for one or more analytes exceeds 20%, the initial calibration curve may still be acceptable if the mean of the RSD values for all analytes in the calibration is less than or equal to 20%." Method 8260B narrows this 20% maximum to 15%.

Two initial calibration curves are reported in this workorder. Both calibrations had several analytes exceeding the maximum allowable 15% RSD. The average %RSD for the 5972-F was 13.4%, and the 5972-Z had an average %RSD of 14.8%.

Sample WP2729-1, 2, 3, 5, 6, 7,8, and 9 required reanalysis due to surrogate or internal standard recovery deviations in the initial analysis to confirm matrix interference, both analyses are included.

Several manual integrations were performed due to split peaks; all have been flagged with a "M" (software-generated) on the pertinent quantitation reports. All "M" flags have been dated and initialed by the analyst performing the integration. In addition, all "M" flags have been reviewed and approved by the GC/MS supervisor. Copies of each manual integration are included in the pertinent quantitation reports.

No other protocol deviations were noted by the volatile organics staff.

Semivolatile Organics Extraction and Analysis

Nine soil/sediment samples were received by Katahdin Analytical Services laboratory on June 3, 1999 for analysis in accordance with 8270C for the PAH list of analytes.

Extraction of the samples occurred following USEPA method 3540 on June 8, 1999. A laboratory control spike consisting of all PAH analytes spiked into organic free sand, was extracted in the batch.

The initial calibration curves analyzed in this SDG had some of the target analyte %RSD values exceeding 15 %.

Method 8000B, section 7.5.1.2.1 (Revision 2, 12/96) states, "in those instances where the RSD for one or more analytes exceeds 20%, the initial calibration curve may still be acceptable if the mean of the RSD values for all analytes in the calibration is less than or equal to 20%." Section 7.3.7.1 of method 8270C (revision 3, 12/96) narrows this 20% maximum to 15%.

In the calibration curves analyzed in this SDG, the average %RSD for all analytes was 9.4% and 11.5%, making the curves acceptable.

Initial analysis of sample WP2729-2 yielded internal standard area recovery deviations and target analyte concentrations over the upper limit of the calibration curve. Reanalysis occurred at a 1:5 dilution successfully. Both sets of data are included in this data package.

Several manual integrations were performed due to split peaks; all have been flagged with a "M" by the data system. All manual integrations have been dated and initialed by the responsible

analyst. Copies of each manual integration are included in the data package. All manual integrations have been reviewed and approved by the GC/MS supervisor.

No other protocol deviations were noted by the semivolatiles organics staff.

Wet Chemistry Analysis

For work order WP2729the analyses for Total Combustible Organics (TCO) have been performed in accordance with the "Annual Book of ASTM Standards", 1987. Analyses for Solids-Total Residue (TS) for work order WP2729 samples have been performed in accordance with "Contract Laboratory Program Statement of Work for Inorganic Analysis".

All analyses were performed within analytical hold time. No protocol deviations were noted by the Wet Chemistry laboratory staff.

Subcontracted Analysis

Analyses for Total Organic Carbon, Total Petroleum Hydrocarbons and Grain size were subcontracted to outside laboratories. All sets of data are included as separate sections to the data package.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager and/or his designee, as verified by the following signature.

<u>Debotah</u> <u>Madeau</u> Authorized Signature 7:29-99

KATAHI ANALYTICAL SERVICES, SAMPLE RECEIPT CONDITION REPO Tel. (207) 874-2400 Fax (207) 775-4029					LAB (WORK ORDER) # WP 2729 PAGE: OF COOLER: OF
CLIENT: Tetra Tech		_			COC# SDG#
PROJECT: Charleston	-	_			RECEIVED BY: LIMS ENTRY BY: LIMS REVIEW BY / PM:
	YES	МО	EXCEPTIONS		COMMENTS RESOLUTION
1. CUSTODY SEALS PRESENT / INTACT?					
2.CHAIN OF CUSTODY PRESENT IN THIS COOLER?	☑´				
3. CHAIN OF CUSTODY SIGNED BY CLIENT?	d				
4. CHAIN OF CUSTODY MATCHES SAMPLES?					
5. TEMPERATURE BLANKS PRESENT?					TEMP BLANK TEMP (*C)=
6. SAMPLES RECEIVED AT 4°C *4-2? ICE)/ ICE PACKS PRESENT (Y) or N?					COOLER TEMP (°C)= NA (RECORD COOLER TEMP ONLY IF TEMP BLANK IS NOT PRESENT)
7. VOLATILES FREE OF HEADSPACE?					
8. TRIP BLANK PRESENT IN THIS COOLER					
9. PROPER SAMPLE CONTAINERS AND VOLUME?					
10. SAMPLES WITHIN HOLD TIME UPON RECEIPT?					
11. SAMPLES PROPERLY PRESERVED(1)?					
12. CORRECTIVE ACTION REPORT FILED?		u	N/A _		
13. ANALYTICAL PROGRAMS (CIRCLE ONE) COMME	ERCIAL	CLP HA	ZWRAP (NFESC	ACOE	AFCEE OTHER (STATE OF ORIGIN):
LOG - IN NOTES ⁽¹⁾ :					

Use this space (and additional sheets if necessary) to document samples that are received broken or compromised, C-O-C discrepancies, radiation checks, residual chlorine check, results of pH check if required. If samples required pH adjustment, record volume and type of preservative added.

atahdin

340 County Road No. 5 P.O. Box 720 Westbrook, ME 04098 Tel: (207) 874-2400

CHAIN of CUSTODY

PLEASE PRINT IN PEN Page _ (848) BI4 9080 (Zip Code 2940 State Purchase Order # Proj. Name / No. Katahdin Quote # Bill (if different than above) Sampler (Print / Sign) Copies To: ANALYSIS AND CONTAINER TYPE PRESERVATIVES WORK ORDER #: LAB USE ONLY Filt. Filt. Filt. Filt. Filt. Filt. Filt. Filt. Filt. KATAHDIN PROJECT MANAGER REMARKS: ☐ UPS ☐ FED EX CLIENT SHIPPING INFO: 809609650243 □ INTACT ☐ NOT INTACT ☐ TEMP BLANK No. of Date / Time Sample Description Matrix coll'd 145LB\$292\$3 6/2/145\$ 145LBØ4Ø3Ø46294 ISOS 145LB4242930 145LBØ5Ø3Ø4 1525 145LBØ6\$4\$5 PW? 15568610405 1220 PID? 155LB020405 1230 4 1230 D 155LB420405D 4 1245 155LBQ40405 PIDS 11 2 14TL&&40/ H COMMENTS Received By: (Signature) Date / Time Relinquished By: (Signature) Date / Time 6/22/44 1800 899649656243 aller Will <u>-399 0945</u>1 Date / Time Received By: (Signature) Received By: (Signature) Refinquished By: (Signature) Relinquished By: (Signature) Date / Time

DRMSOURCE INC. 12 (207) 782-3311 DRM # CHN-OF-CSTDY

000000

KATAHDIN ANALYTICAL SERVICES, INCORPORATED New England-ME Laboratory (207) 874-2400 CONFIRMATION

Page 1

Project Manager: Andrea J. Colby ORDER NO WP-2729 ORDER DATE: 06/03/99 PHONE: 850/385-9899 RT TO: Paul Calligan Tetra Tech NUS FAX: 850/385-9860 1401 Oven Park Dr., Suite 102 DUE: 03 JUL Tallahassee, FL 32308 FAC. ID: CNC CHARLESTON PHONE: 412/921-7090 INVOICE: ACCOUNTS PAYABLE TETRA TECH NUS, INC. PO: N7912-P99264 661 ANDERSEN DRIVE, FOSTER PLAZA VII PITTSBURGH, PA 15220-2745 PROJECT: CTO #68 DELIVERED BY: FEDEX SAMPLED BY: R. FRANKLIN DISPOSE: AFTER 02 AUG MATRIX ITEM LOG NUMBER SAMPLE DESCRIPTION SAMPLED DATE/TIME RECEIVED 1 WP2729-3 14SLB060405 02 JUN 1540 03 JUN SL WP2729-5 15SLB040405 02 JUN 1245 METHOD OTY PRICE DETERMINATION AMOUNT Polynuclear Aromatic Hydrocarbons EPA 8270 2 135.00 270.00 Volatile Organics by 8260B SW8260 2 85.00 170.00 Solids-Total Residue (TS) CLP/CIP SO 2 0.00 0.00 220.00 440.00 TOTALS LOG NUMBER SAMPLE DESCRIPTION SAMPLED DATE/TIME RECEIVED MATRIX 02 JUN 1505 03 JUN WP2729-6 14SLB040304 SLOTY DETERMINATION METHOD PRICE TRUOMA EPA 8270 SW8260 Polynuclear Aromatic Hydrocarbons 135.00 135.00 1 Volatile Organics by 8260B SW8260 CLP/CIP SO 1 0.00 1 110.00 1 85.00 85.00 Solids-Total Residue (TS) 0.00 Wet Lab Subcontract 110.00 TOTALS 330.00 330.00 LOG NUMBER SAMPLE DESCRIPTION SAMPLED DATE/TIME RECEIVED WP2729-8 14SLB050304 02 JUN 1525 03 JUN SL 02 JUN 1220 WP2729-9 15SLB010405 METHOD PRICE OTY DETERMINATION EPA 8270 SW8260 CLP/CIP SO TRUDOMA Polynuclear Aromatic Hydrocarbons 2 135.00 270.00 Volatile Organics by 8260B 85.00 170.00 Solids-Total Residue (TS) Total Combustible Organics Wet Lab Subcontract 2 0.00 0.00 ASTM D2974 2 30.00 60.00 2 Wet Lab Subcontract 60.00 120.00

LABORATORY ORDER CONTINUED ON PAGE 2

TOTALS

0000007 MC10114199

620.00

310.00

New England-ME Laboratory (207) 874-2400 CONFIRMATION

ORDER NO WP-2729

Page 2

Project Manager: Andrea J. Colby

ORDER DATE: 06/03/99 REPORT TO: Paul Calligan PHONE: 850/385-989 Tetra Tech NUS FAX: 850/385-9860 1401 Oven Park Dr., Suite 102 DUE: 03 JUL Tallahassee, FL 32308 FAC.ID: CNC CHARLESTON PHONE: 412/921-7090 INVOICE: ACCOUNTS PAYABLE TETRA TECH NUS. INC. PO: N7912-P99264 661 ANDERSEN DRIVE, FOSTER PLAZA VII PITTSBURGH, PA 15220-2745 PROJECT: CTO #68 SAMPLED BY: R. FRANKLIN DELIVERED BY: FEDEX DISPOSE: AFTER 02 AUG LOG NUMBER SAMPLE DESCRIPTION SAMPLED DATE/TIME RECEIVED MATRIX WP2729-10 14TL00401 02 JUN O3 JUN DETERMINATION METHOD PRICE TRUOMA Volatile Organics by 8260B SW8260 85.00 85.00 LOG NUMBER SAMPLE DESCRIPTION SAMPLED DATE/TIME RECEIVED WP2729-11 29SLB050809 02 JUN 1055 O3 JUN DETERMINATION METHOD OTY PRICE TRUOMA Wet Lab Subcontract 75.00 75.00 LOG NUMBER SAMPLE DESCRIPTION SAMPLED DATE/TIME RECEIVED MATRIX WP2729-1 14SLB020203 02 JUN 1450 03 JUN SL WP2729-2 14SLB020203D 02 JUN 1450 WP2**7**29-4 15SLB020405D 02 JUN 1230 OTY DETERMINATION METHOD PRICE AMOUNT 405.00 Polynuclear Aromatic Hydrocarbons EPA 8270 3 135.00 Volatile Organics by 8260B SW8260 3 85.00 255.00 Solids-Total Residue (TS) CLP/CIP SO 3 0.00 0.00 Wet Lab Subcontract 3 75.00 225.00 TOTALS 3 295.00 885.00

KATAHDIN ANALYTICAL SERVICES, INCORPORATED New England-ME Laboratory (207) 874-2400 CONFIRMATION

Page 3

ORDER NO WP-2729

Project Manager: Andrea J. Colby

ORDER DATE: 06/03/99

RF RT TO: Paul Calligan

PHONE: 850/385-9899

Tetra Tech NUS

FAX: 850/385-9860

1401 Oven Park Dr., Suite 102

DUE: 03 JUL

Tallahassee, FL 32308

FAC.ID: CNC CHARLESTON

INVOICE:

ACCOUNTS PAYABLE

PHONE: 412/921-7090

TETRA TECH NUS, INC.

PO: N7912-P99264

661 ANDERSEN DRIVE, FOSTER PLAZA VII

PITTSBURGH, PA 15220-2745

PROJECT: CTO #68

SAMPLED BY: R. FRANKLIN

DELIVERED BY: FEDEX

DISPOSE: AFTER 02 AUG

LOG NUMBER SAMPLE DESCRIPTION	SAMPLED DATE	/TIME	RECEIVED	<u>MATRIX</u>
7 WP2729-7 15SLB020405	02 JUN	1230	03 JUN	SL
DETERMINATION	METHOD	OTY	PRICE	AMOUNT
Polynuclear Aromatic Hydrocarbons	EPA 8270	1	135.00	135.00
Volatile Organics by 8260B	SW8260	1	85.00	85.00
Solids-Total Residue (TS)	CLP/CIP SO	1	0.00	0.00
Wet Lab Subcontract		1	185.00	185.00
TOTALS		1	405.00	405.00

ORDER NOTE:

QC-IV NFESC-D

DD(KAS007QC-DB3)

CNC CHARLESTON

REPORT COPY: MS. LEE LECK

TETRA TECH NUS FOSTER PLAZA 7 661 ANDERSEN DR. PITTSBURGH,PA 15220

REPORT & DISK

I' DICE: With Report

TOTAL ORDER AMOUNT \$2,840.00 This is NOT an Invoice

AJC/BKR/WEST.AJC(dw)

06-14Please contact KATAHDIN ANALYTICAL SERVICES promptly if you have any questi

CASE NARRATIVE

for

Katahdin Analytical Westbrook, ME

Former Charleston Naval Complex Site SDG #96058S

June 21, 1999

Laboratory Identification:

General Engineering Laboratories, Inc. (GEL)

Mailing Address:

P.O. Box 30712 Charleston, SC 29417

Express Mail Delivery and Shipping Address:

2040 Savage Rd Charleston, SC 29414

Telephone Number:

(843) 556-8171

Summary:

Sample receipt

The samples from the former Charleston Naval Complex site arrived at General Engineering Laboratories, Inc., Charleston, SC on June 1 and 2, 1999, for environmental analyses. All sample containers arrived without any visible signs of tampering or breakage. The samples were delivered with chain of custody documentation and signatures.

The following samples were received by the laboratory:

Laboratory	Sample
Identification	Description
9906058-01	29SLB060809
9906097-01	14SLB020203
9906097-02	14SLB020203D
9906097-03	14SLB050304
9906097-04	15SLB010405

9906097-05 9906097-06 9906097-07 15SLB020405 15SLB020405D 29SLB050809

Case Narrative

Sample analyses were conducted using methodology as outlined in General Engineering Laboratories Standard Operating Procedures. Any technical or administrative problems during analysis, data review, and reduction are listed below by analytical parameter.

Internal Chain of Custody:

Custody was maintained for all samples.

Data Package:

The enclosed data package contains the following sections: Case Narrative, Chain of Custody, Cooler Receipt Checklist, and General Chemistry.

The following are definitions of reporting limits used at General Engineering Laboratories:

Detection Limit: The minimum level of an analyte that can be determined (identified not quantified) with 99% confidence. The values are normally achieved by preparing and analyzing seven aliquots of laboratory water spiked 1 to 5 times the estimated MDL, taking the standard deviation and multiplying it against the one-tailed t-statistic at 99%. This computed value is then verified for reasonableness by repeating the study using the concentration found in the initial study, calculating an F-ratio, and computing the final limit. Sample specific preparation and dilution factors are applied to these limits when they are reported.

The detection limit is the minimum concentration of a substance that can be identified, measured, and reported with 99% confidence that the analyte concentration is above zero. It answers the question "Is It Present."

QL Quantitation Limit: The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. The QL is generally 5 to 10 times the MDL. However, it may be nominally chosen within these guidelines to simplify data reporting. For many analytes the QL analyte concentration is selected as the lowest non-zero standard in the calibration curve.

Sample QL's are highly matrix-dependent. Sample specific preparation and dilution factors are applied to these limits when they are reported.

The QL is always \geq DL.

This data package, to the best of my knowledge, is in compliance with technical and administrative requirements.

Valerie S. Davis Project Manager

fc:saic9906058%

Case Narrative for KATA SDG# 96058S

TOTAL PETROLEUM HYDROCARBONS

Analytical Batch Number: 151686

Analytical Method: SW846 9071A

Sample Description
14SLB020203
14SLB020203D
15SLB020405
15SLB020405D
29SLB050809
Blank
Laboratory Control Sample
Matrix Spike of 9906097-01
Duplicate of 9906097-01
Matrix Spike of 9906242-01
Duplicate of 9906242-01

Instrument Calibration:

The instrument was properly calibrated.

Holding Time:

All samples were analyzed within the required holding time.

Blanks:

No target analytes were detected in the method blank above the required acceptance limit.

Spike Analyses:

The matrix spikes were run on the following Sample Numbers.

9906097-01 and 9906242-01

All analyte recoveries in the matrix spikes were within the required acceptance limits.

Laboratory Control Samples:

All analyte recoveries in the laboratory control sample were within the required acceptance limits.

Sample Duplicates:

All sample duplicate results were within the required acceptance limits.

Dilutions:

None of the samples were diluted.

Non Conformance Reports:

There were no Nonconformance Reports associated with this batch.

TOTAL ORGANIC CARBON

Analytical Batch Number: 150724

Analytical Method: SW846 9060 Modified

Laboratory Number	Sample Description
9906058-01	29SLB060809
9906097-03	14SLB050304
9906097-04	15SLB010405
QC617934	Blank
QC617935	Duplicate of 9906058-01
QC617936	Post Spike of 9906058-01
QC617937	Laboratory Control Sample

Sample Preparation:

All samples were prepared in accordance with accepted procedures. The method quoted is only for liquid samples. It is modified to handle soils analysis.

Instrument Calibration:

The instrument used was a Dohrmann DC-190 high temperature combustion TOC analyzer with a Dohrmann solids boat sampler. The instrument was properly calibrated on the day of the analysis.

Holding Time:

All samples were analyzed within the required holding time.

Blanks:

No target analytes were detected in the method blank above the required acceptance limit.

Spike Analyses:

The post spike was run on the following Sample Number.

9906058-01

All analyte recoveries in the post spike were within the required acceptance limits.

Laboratory Control Samples:

All analyte recoveries in the laboratory control sample were within the required acceptance limits.

Sample Duplicates:

All sample duplicate results were within the required acceptance limits.

Dilutions:

None of the samples were diluted.

Non Conformance Reports:

There were no Nonconformance Reports associated with this batch.

Additional Comments:

TOC solid samples are are tested to determine if inorganic carbon such as carbonates and bicarbonates are present in the sample. If so, the sample is acidified to remove the inorganic carbon, then dried in a low temperature oven. Because the sample portion is dried before analysis, the percent moisture correction is not applied to the TOC solid result.

The preceding narratives have been reviewed by: Date: 06/27/59

CHAIN OF CUSTODY RECORD

General Engineering Laboratories, Inc. 2040 Savage Road
Charleston, South Carolin 97
P.O. Box 30712
Charleston, South Carolina 29417
(803) 556-8171

Client Name/Fesility No					Т	Т	SAN	APLE A	ANAI	YSIS I	REON	アし	<u>/////////////////////////////////////</u>		de sees	to tree	ify speci	fin com	nound.	4 04 me	bode	_			
Vi to La	, '				ျာ			டட	LL	LL.		11	<u> </u>	$oldsymbol{ol}}}}}}}}}}}}}}}}}}$	<u> </u>	ш.							(• '	Jse F or P in the boxes to in sample was filtered and/o	
Eutura.	15				- 1 💆	<u>></u>			身		8	¥				2	2			ify		"			
Client Name/Facility Na Kutahd Collected by/Company Tetra T	ech 1	UUS			ONTAL	ductivii	8		Pland	Vitrate	Pecify	S-spec		٠,	Jenol	tractab	ractable			n - spec					
SAMPLE ID	DATE	TIME	WELL	COMP	# OF CONTAINERS	pH, conductivity	TOCO	TOX	Chlorid Sulfide	Nitrite/Nitrate	VOC - Specify Method required	METAL	Pesticid	Herbick	Total Pt	Acid Extractables	B/N Extractables	PCB's	Cyanide	Colfform - specify type				Remark	s
72951806484	9 6/1	1524					l																		
295LBØ6Ø8Ø 29SLBØ6Ø8Ø 29SLBØ6Ø8Ø	195 6/1	1520					i																		
295LB06484	89M 6/1	1524					1																		
			\prod								-													-	
	·		\prod																						
	,						-									_									
	,																						_		
	1		$\prod_{i=1}^{n}$		\dagger^-			-																	
Retinquished by:		Date: 6199	Time 17	<u>5</u> 4	Rece	elved b	y:						Relin	quishe	ed by:		[Date	:	Time:	Received by:	·
Relinquished by:		Date:	Tim	<u> </u>		eived b	y int	by:		<u></u>			Date:	/50	Time		Rema	rks:							

White = sample collector

Yellow = file

Pink = with report

CHAIN OF CUSTODY RECORD

General Engineering Laboratories, Inc. 2040 Savage Road Charleston, South Carolina 29407 P.O. Box 30712 Charleston, South Carolina 29417 (803) 556-8171

	Page of														٥	101	06	٥	77	L-7.	<u> </u>			 (803)	556-8171	
	Client Name/Facility	Name	1 1	1.			္ဌ		SAM	PLE	ANAL	YSIS	REQU	IRED	(x) - us	c remar	rks area	to spec	ify spec	ific cor	npound	s or me	thods		e F or P in the boxes to indi sample was filtered and/or	
	Client Name/Facility Kataha Collected by/Company Refro	tec	h No)	<u> </u>	싀	CONTAINER	pH, conductivity	ж		Chloride, Fluoride, Sulfide	Nitrite/Nitrate	VOC - Specify Method required	METALS - specify	de	\$	Total Phenol	Acid Extractables	BN Extractables		ž.	rm - specify	пç			
	SAMPLE ID	DATE	TIME	WELL	SOIL	GRAB	# OF (pH, co	TOC/DOC	TOX	Selfe	Nitrite	VOC.	META	Pestici	Herbicide	Total	Acid E	E NA	PCB's	Cyanide	Coliform - s type	5		Remark	S
۱۱،	145LBO2434	2 6 2 4	1456				1												ļ <u>.</u>				١			
긱	14SLBOZÞ2Ø3	6 24	145\$)		_,												,		1			
3	145LB\$5436	pay "	1525				-		1			_							_							,
4	14SLBØ5436 16SLBØ1Ø46 15SLBØ2Ø46	55 11	1220				١.		1						ļ . <u></u> .		T									
			1230		_		١				T								_			_				
٥	155LBØZ <i>Ø4Ø</i> 295LBØ5Ø8	SD 1'	1234		-		1		 		ļ <u>.</u>	<u> </u>			<u></u>			<u></u> .		ļ 		_	1			
7	29 SLB\$5 \$8	'v9 "	1455		_		1			_	<u> </u>	_											1			
				\coprod	\downarrow							_						_	_	 	<u> </u>					
					_							_							 	ļ			_			
				\prod			`														<u></u>					
				\coprod								_										_				
					\perp																	_				
	National de la constant de la consta		Date	Ti-			Da	lauri I-							D-t#	Nowlet-	ed by:						Date	Time:	Received by:	
	Relinquished by:	<u></u>	Date: 62 99	_		. 1		ived b							<u></u>		_						Jau	 * mie:	Atterior by	
ſ	Relinquished by:		Date:	Tin	ne:	(Recel	ived b	y lab.	by: ኒ ኒ/የ	<u>,</u> J.	_			Date		Tim I'')		Rem	arks:						

Pink = with report

Yellow = file

White:

ple collector

FEDERAL SAMPLE () RE	CEIPT REVIEW
Client KATA Received by	Date 6/2/99
GEL COOLER GEL POLY COOLER CLIEN	
SAMPLE REVIEW CRITERIA	YES NO COMMENTS/QUALIFIERS
Were shipping containers received intact and sealed? If no, notify Project Manager	
 Was the Shipment screened following the radiochemistry survey procedure (EPI SOP S-007)? 	
Were the survey results negative? If no, notify Project Manager	
Are any of the samples identified by the client as radioactive? If yes, did client provide RAD activity?	
3. Were chain of custody documents included?	
Were chain of custody documents completed correctly? (Ink. signed, match containers)	
5. Were all sample containers properly labeled?	
6. Were proper sample containers received?	
7. Preserved samples checked for pH?	
8. Were samples preserved correctly? If no, list samples & tests	
9. Shipping container temperature checked?	V
10. Was shipping conatiner temperature within specifications (4°± 2° C) If no, notify Project Manager	4°C
11. Is temperature documented on the Chain of Custody?	
12. Were samples received within holding time? if No. notify Project Manger	
13. Were VOA vials free of headspace?	
14. ARCOC# IF REQUIRED	
15. SDG# IF REQUIRED	
REVIEW HAGIST DATE 6/199 SA-SE	: ALS ATTACHED NSA - NO SEALS ATTACHED

FEDERAL SAMPLE RE	CEIPT REVIEW
Client KATA Received by CG	Date_ 6/2/99
GEL COOLER GEL POLY COOLER CLIEN	T COOLER OTHER
SAMPLE REVIEW CRITERIA	YES NO COMMENTS/QUALIFIERS
Were shipping containers received intact and sealed? If no, notify Project Manager	
Was the Shipment screened following the radiochemistry survey procedure (EPI SOP S-007)?	
Were the survey results negative? If no, notify Project Manager	
Are any of the samples identified by the client as radioactive? If yes, did client provide RAD activity?	
3. Were chain of custody documents included?	
 Were chain of custody documents completed correctly? (Ink. signed, match containers) 	
5. Were all sample containers properly labeled?	
6. Were proper sample containers received?	
7. Preserved samples checked for pH?	
8. Were samples preserved correctly? If no, list samples & tests	T+ Soil
9. Shipping container temperature checked?	
 Was shipping conatiner temperature within specifications (4°±2° C) If no, notify Project Manager 	- 4°C
11. Is temperature documented on the Chain of Custody?	
12. Were samples received within holding time? if No. notify Project Manger	
13. Were VOA vials free of headspace?	
14. ARCOC# IF REQUIRED	
15. SDG# IF REQUIRED	76097
REVIEW HOUCE DATE 6/2/99 SA-SE	ALS ATTACHED NSA - NO SEALS ATTACHED

Katahdin Analytical

340 County Road

Westbrook, Maine 04092

Contact:

Ms. Andrea Colby

Project Description:

Former Naval Complex

cc: KATA00199

Report Date: June 22, 1999

Page 1 of 1

: 29SLB060809
: 9906058-01
: Soil
: 06/01/99
: 06/01/99
: Routine
: Client

Parameter	Qualifler	Result	DL	RL	Units	DI	Ana	lyst Date	Time	Batch	M
General Chemistry Evaporative Loss @ Total Organic Carbo		8.00 6780	1.00 43.1	1.00 100	wt% mg/kg		GJ LS	06/03/99 06/18/99	•	150650 150724	_

M = Method	Method-Description	
M 1	EPA 3550	
M 2	SW846 9060 Modified	

Notes:

The qualifiers in this report are defined as follows:

ND indicates that the analyte was not detected at a concentration greater than the detection limit.

J indicates presence of analyte at a concentration less than the reporting limit (RL) and greater than the detection limit (DL).

U indicates that the analyte was not detected at a concentration greater than the detection limit.

Data reported in mass/mass units is reported as 'dry weight'.

This data report has been prepared and reviewed in accordance with General Engineering Laboratories standard operating procedures. Please direct any questions to your Project Manager, Valerie Davis at (843) 769-7391.

Reviewed By

0000K0<0 01

^{*} indicates that a quality control analyte recovery is outside of specified acceptance criteria.

Katahdin Analytical

340 County Road

Westbrook, Maine 04092

Contact:

Ms. Andrea Colby

Project Description:

Former Naval Complex

cc: KATA00199

Report Date: June 22, 1999

Page 1 of 1

Sample ID Lab ID : 29SLB050809 : 9906097-07

Matrix
Date Collected
Date Received

: 06/02/99

: Soil

Priority
Collector

: Routine : Client

Parameter	Qualifler	Result	DL	RĻ	Units	DF	Analy	st Date	Time	Batch	М
General Chemistr	гу								_		
Total Rec. Petro.	Hydrocarbons	9150	54.0	108	mg/kg	1.0	AAT	06/22/99	0950	151686	5 1
Evaporative Loss	@ 105 C	7.00	1.00	1.00	wt%	1.0	GJ	06/03/99	1500	150650	2

M = Method	Method-Description	
M 1	SW846 9071A	
M 2	EPA 3550	

Notes

The qualifiers in this report are defined as follows:

ND indicates that the analyte was not detected at a concentration greater than the detection limit.

J indicates presence of analyte at a concentration less than the reporting limit (RL) and greater than the detection limit (DL).

U indicates that the analyte was not detected at a concentration greater than the detection limit.

Just 97 W

Data reported in mass/mass units is reported as 'dry weight'.

This data report has been prepared and reviewed in accordance with General Engineering Laboratories standard operating procedures. Please direct any questions to your Project Manager, Valerie Davis at (843) 769-7391.

Reviewed By

24

^{*} indicates that a quality control analyte recovery is outside of specified acceptance criteria.

QC Summary Report

Project Description:

Former Naval Complex

cc: KATA00199

Lab. Sample ID: 9906097%

Report Date: June 22, 1999

Page 1 of 1

Sample/Parameter	Туре	Batch	NOM	Sample	Qual QC	Units	RPD%	REC%	Range	Analyst	Date	Time
General Chemistry												
QC621595	BLANK	151686										
Total Rec. Petro. Hydro	ocarbons				0.00	mg/kg				AAT	06/22/99	0950
QC621598 9906097	-01DUP	151686										
Total Rec. Petro, Hydro	ocarbons			783	1020	mg/kg	26.3					
QC621600 9906242	-01DUP	151686										
Total Rec. Petro, Hydro	carbons			1560	1910	mg/kg	20.0					
QC621596	LCS	151686										
Total Rec. Petro. Hydro	carbons		11000		9840	mg/kg		89.6	(70.0 - 11	6.)		
QC621597 990609	7-01MS	151686										
Total Rec. Petro. Hydro	ocarbons		13200	783	12600	mg/kg		90.0	(70.0 - 13	30.)		
QC621599 990624	42-01MS	151686										
Total Rec. Petro. Hydro	ocarbons		12100	1560	13000	mg/kg		94.6	(70.0 - 13	30.)		
QC617634	BLANK	150650										
Evaporative Loss @ 10	5 C				0.00	wt%				GJ	06/03/99	9 1 50 0
QC617632 9906058	3-01DUP	150650										
Evaporative Loss @ 10	5 C			8.00	8.00	wt%	0.00					
QC617934	BLANK	150724										
Total Organic Carbon					-2.83	mg/kg				LS	06/18/99	9 1628
QC617935 9906058	3-01DUP	150724										
Total Organic Carbon				6780	6830	mg/kg	0.764			LS	06/18/9	9 1740
QC617937	LCS	150724										
Total Organic Carbon			3750		4420	mg/kg		118	(88.0 - 1	30.) LS	06/18/9	9 1612
QC617936 99060	58-01 PS	150724										
Total Organic Carbon			10000	6780	16200	mg/kg		94.2	(73.0 - 1	29.) LS	06/18/9	9 1747

Notes:

The qualifiers in this report are defined as follows: J indicates presence of analyte < RL (Report Limit) U indicates presence of analyte < DL (Detect Limit)

n/a indicates that spike recovery limits do not apply when sample concentration exceeds spike cone by a factor of 4 or more

S. W. COLE ENGINEERING, INC.

REPORT OF GRADATION ASTM C-117, C-136

Project No.

99008

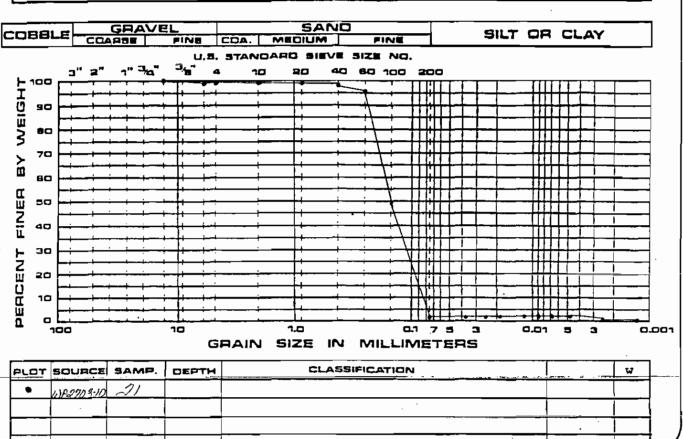
Date

06/07/1999

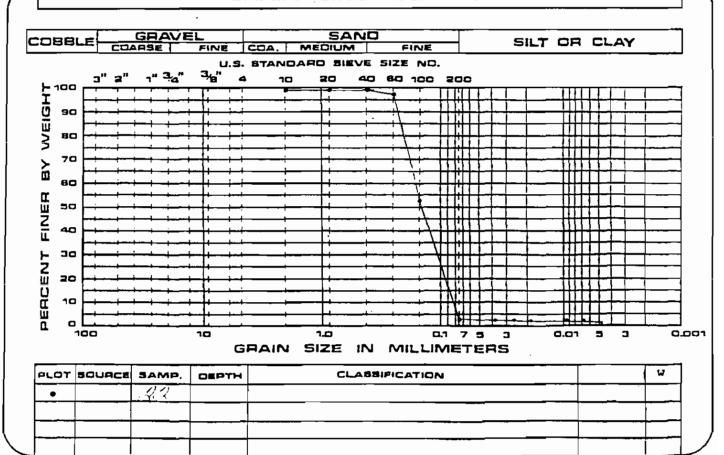
Project

MISCELLANEOUS

Client


KATAHDIN ANALYTICAL

Sample No. 21, SAND, WP2703-10


Sieve Size	Percent Passing	PROJECT <u>Specifications</u> %
1/2 "	100.0	
1/4 "	99.6	
# 4	99.6	
# 10	99.4	
# 20	99.1	
# 40	98.8	
# 60	96.1	
# 100	49.0	
# 200	2.2	

JOB NO: 19-07-5

GRAIN SIZE ANALYSIS

September 15, 1999

Mr. Paul Calligan
Tetra Tech Nus
1401 Oven Park Dr., Suite 102
Tallahassee, FL 32308

RE: Katahdin Lab Number:

WP3570

Project ID:

CNC Charleston

Project Manager:

Ms. Andrea J.Colby

Sample Receipt Date(s):

8/10/99

Dear Mr. Calligan:

Please find enclosed the following information:

- Report of Analysis
- Quality Control Data Summary
- * Chain of Custody
- * Confirmation

Should you have any questions or comments concerning this Report of Analysis, please do not hesitate to contact the project manager listed above. This cover letter is an integral part of the ROA.

We appreciate your continued use of our laboratory and look forward to working with you in the future. The following signature indicates technical review and acceptance of the data.

Sincerely,

KATAHDIN ANALYTICAL SERVICES

Hara Crouch
Authorized Signature

09/15/99

SDG NARRATIVE KATAHDIN ANALYTICAL SERVICES TETRA TECH NUS CASE CNC CHARLESTON

Sample Receipt

The following samples were received on August 10, 1999 and were logged in under Katahdin Analytical Services work order number WP3570 for a hardcopy due date of September 9, 1999.

KATAHDIN	TTNUS
Sample No.	Sample Identification
WP3570-1	19GLM0101
WP3570-2	19GLM0401
WP3570-3	19GLM0201
WP3570-4	29GLM0601
WP3570-5	33GLM0401
WP3570-6	33GLM0601
WP3570-7	41GLM0101D
WP3570-8	41GLM0701
WP3570-9	41GLM0601
WP3570-10	33GLM0201D
WP3570-11	33GLM0101
WP3570-12	33GLM0201
WP3570-13	33GLM0501
WP3570-14	41GLM0301
WP3570-15	41GLM0101
WP3570-16	41GLM0501
WP3570-17	33GLM0301
WP3570-18	33TL00101

The samples were logged in for the analyses specified on the chain of custody form. All problems encountered and resolved during sample receipt have been documented on the applicable chain of custody forms.

Sample analyses have been performed by the methods as noted herein.

Volatile Organic Analysis

Seventeen aqueous samples were received by the Katahdin Analytical Services, Inc. GC/MS laboratory on August 10, 1999 and were specified to be analyzed by USEPA method 8260B for the analytes benzene, toluene, ethylbenzene, xylenes, MTBE, naphthalene, and EDB.

Analyses for this workorder were performed on the 5970-Q instrument. A VSTD050 (50 ppb

standard) was used for the continuing calibration standard. Internal standard and surrogate compounds were also spiked at 50 ppb.

Batch QC (VBLK, and LCS) was performed in each twelve-hour window. Results are included in this data package. The LCS QC samples were spiked with the entire list of compounds quantitated for at 50 ppb. A matrix spike/matrix spike duplicate pair was performed on sample WP3570-14.

Several manual integrations were performed due to split peaks; all have been flagged with a "M" (software-generated) on the pertinent quantitation reports. All "M" flags have been dated and initialed by the analyst performing the integration. In addition, all "M" flags have been reviewed and approved by the GC/MS supervisor. Copies of each manual integration are included in the pertinent quantitation reports.

No other protocol deviations were noted by the volatile organics staff.

Semivolatile Organics Analysis

Seventeen aqueous samples were received by Katahdin Analytical Services laboratory on August 10, 1999 for analysis in accordance with 8270C for a client specified PAH list of analytes.

Extraction of the samples occurred following USEPA method 3510 on August 13, 1999. A laboratory control spike, consisting of all PAH analytes spiked into organic free water, was extracted in the batch, along with a matrix spike/matrix spike duplicate pair on sample WP3570-4.

Initial analyses of samples WP3570-1 and -2 yielded target analyte concentrations over the upper limit of the calibration curve. The analysis of sample WP3570-1 also yielded a low recovery of the surrogate terphenyl-d14. Re-analyses occurred at 1:2 dilutions for each. Both sets of data for sample WP3570-2 are included in this data package. Sample WP3570-1 was reextracted on August 23, 1999, following USEPA method 3510, outside of holding times. Surrogate recoveries for this reextracted sample met QC limits. All three sets of data for this sample are included in the data package.

Initial analysis of sample WP3570-3 yielded a low recovery of the surrogate terphenyl-d14. Re-extraction occurred on August 23, 1999, following USEPA method 3510. The re-extracted sample also had a low recovery of the surrogate terphenyl-d14, confirming matrix interference. Both sets of data are included in the data package.

Analysis of the QC sample WP3570-4MS yielded a low recovery of the surrogate terphenyl-d14. In accordance with the method, no action was taken with this QC sample.

Initial analysis of sample WP3570-17 yielded internal standard area recovery deviations. Reanalysis yielded a similar result, confirming matrix interference. Both sets of data are included in this data package.

Several manual integrations were performed due to split peaks; all have been flagged with a "M" by the data system. All manual integrations have been dated and initialed by the responsible analyst. Copies of each manual integration are included in the data package. All manual integrations have been reviewed and approved by the GC/MS supervisor.

No other protocol deviations were noted by the semivolatiles organics staff.

Wet Chemistry Analysis

For work order WP3570 analyses for Nitrate (E300) and Sulfate (E300) were performed according to the U.S. EPA "Methods for the Determination of Inorganic Substances in Environmental Samples", EPA 600/R-93/100, August 1993. All samples were run within laboratory hold time.

The wet chemistry staff noted no protocol deviations.

KATAHD NALYTICAL SERVICES	, INC.			(,	LAB (WORK ORDER) #
SAMPLE RECEIPT CONDITION REPO	ORT				PAGE: 1 OF 3
Tel. (207) 874-2400					PAGE:
Fax (207) 775-4029		٠.			cooler:/ of 3
CLIENT: Tetratech SC					COC# SDG#
		_			DATE / TIME RECEIVED: 08-10-99~0900
					DELIVERED BY: FED EY
PROJECT: CNC CHARLESTON	7				RECEIVED BY:BKK
<u> </u>	*	_			LIMS REVIEW BY / PM:
Vn	YES	. NO	EXCEPTIONS		COMMENTS RESOLUTION
1. CUSTODY SEALS PRESENT / INTACT?	<u>u</u>				,
2:CHAIN OF CUSTODY PRESENT IN THIS COOLER?					
3. CHAIN OF CUSTODY SIGNED BY CLIENT?	U,				
4. CHAIN OF CUSTODY MATCHES SAMPLES?	ø,			•	
5. TEMPERATURE BLANKS PRESENT?	B		. 🚨		TEMP BLANK TEMP (°C)= 1.2 8/10/99 Proceed with
6. SAMPLES RECEIVED AT 4°C.+/- 2? OCE NICE PACKS PRESENT (Y) or N?		旦			(RECORD COOLER TEMP ONLY IF TEMP BLANK IS NOT PRESENT)
7. VOLATILES FREE OF HEADSPACE?	I				(NESSING SESSIENCE PLANT SESSIENCE PROCESSING
8. TRIP BLANK PRESENT IN THIS COOLER	ā	<u> </u>	ā		
9. PROPER SAMPLE CONTAINERS AND VOLUME?	\Box				
10. SAMPLES WITHIN HOLD TIME UPON RECEIPT?	Ī				
	Image: section of the	ā			
11. SAMPLES PROPERLY PRESERVED(1)?		<u> </u>	_		
12. CORRECTIVE ACTION REPORT FILED?	_	_	N/A	• (
13. ANALYTICAL PROGRAMS (CIRCLE ONE) COMM	ERCIAL	CLP HAZ	WRAP NESC	ACOE	AFCEE OTHER (STATE OF ORIGIN):
LOG - IN NOTES(1): 33 GLM (0301:	AII 3	voa vials	arrive	d broken - called client on 8/10/99 - Therefore
/33GLP	1 1017	D US	written or	1 COC N	us written 330LM201D on cortainers. 7 carled cire
					· · · · · · · · · · · · · · · · · · ·
Lound	in all	cording	to C.0	.6.	afcee other (STATE OF ORIGIN): SC d broken - called client on 8/10/99 - Thomas I called clie on 3/10/99 - Leg in as p 10/1 Should be Contained Contained

0000074

Use this space (and additional sheets if necessary) to document samples that are received broken or compromised, C-O-C discrepancies, radiation checks, residual chlorine check, results of pH check if required. If samples required pH adjustment, record volume and type of preservative added.

	KATAHDIN ANALYTICAL SERVICES,						LAB (WORK O	RDER) #	WP	<u>3570</u>		
	SAMPLE RECEIPT CONDITION REPO Tel. (207) 874-2400	RT					PAGE:	2	OF -			
	Fax (207) 775-4029									2		
			٠.				COOLER:		OF			
	CLIENT: Tetratech-SC						COC# SDG#					
	CLIENT. 1817A-CO. 30		_				DATE / TIME F	RECEIVED:	28	10-99	~0900)	
	,						DELIVERED BY		-	T+De	J	
	PROJECT: CNC CHARLESTON		_				LIMS ENTRY	BY:		SW	<u> </u>	
	Vm	•					LIMS REVIEW	/ BY / PM:		KM		
	Ven	YES	NO	EXCEPTIONS		COMME	NTS		RE	SOLUTION		
	1. CUSTODY SEALS PRESENT / INTACT?	9										
	2.CHAIN OF CUSTODY PRESENT IN THIS COOLER?	4				-			<u> </u>			
	3. CHAIN OF CUSTODY SIGNED BY CLIENT?	4										
	4. CHAIN OF CUSTODY MATCHES SAMPLES?	⊡ ∕			•			• •	·	allad o	10.10.2	lok
	5. TEMPERATURE BLANKS PRESENT?	y				TEMP B	LANK TEMP (°C)=	<u>0.3 </u>	. <u>1</u>	1010	over the de	na
	6. SAMPLES RECEIVED AT 4°C +/- 27		प			COOLER	R TEMP (°C)=	NA		Pr 4 8(10)		
	ICE ICE PACKS PRESENT (Y') or N?	4				(RECOR	D COOLER TEMP	ONLY IF TEMP	BLANK I	S NOT PRESE	NT)	
	7. VOLATILES FREE OF HEADSPACE?	<u> </u>				-			- –			
	8. TRIP BLANK PRESENT IN THIS COOLER		_	_				_				
	9. PROPER SAMPLE CONTAINERS AND VOLUME?	☑										
	10. SAMPLES WITHIN HOLD TIME UPON RECEIPT?					-	.•		- –			
	11. SAMPLES PROPERLY PRESERVED(1)?			Ø		-			- –			
	12. CORRECTIVE ACTION REPORT FILED?		P	N/A				<u> </u>		 		
	13. ANALYTICAL PROGRAMS (CIRCLE ONE) COMME	RCIAL	CLP HA	ZWRAP (NFESC	ACOE	AFCEE	OTHER (STATE	OF ORIGIN):	90	·		
00	LOG - IN NOTES ⁽¹⁾ :											
0000075												
)75				•								
			`)								

KATAHDI NALYTICAL SERVICES, I SAMPLE RECEIPT CONDITION REPORT Tel. (207) 874-2400 Fax (207) 775-4029			₹ \$	LAB (WORK ORDER) # PAGE:	OF 3
PROJECT: CNCCHARUSTON		~ 		COC#SDG#DATE / TIME RECEIVED:DELIVERED BY:RECEIVED BY:LIMS ENTRY BY:	08-10-99~0900 FEDEY BKK
•	.	_		LIMS REVIEW BY / PM:	KAP
Vn	YES	NO EXCE	PTIONS	COMMENTS	RESOLUTION
1. CUSTODY SEALS PRESENT / INTACT?					
2.CHAIN OF CUSTODY PRESENT IN THIS COOLER?					<u> </u>
3. CHAIN OF CUSTODY SIGNED BY CLIENT?			\supset		
4. CHAIN OF CUSTODY MATCHES SAMPLES?	₫′ .			<u> </u>	
5. TEMPERATURE BLANKS PRESENT?	4			TEMP BLANK TEMP (*C)= 0.5	Wolfed with analy
6. SAMPLES RECEIVED AT 4°C ±1-2? (ICE) ICE PACKS PRESENT (Y) or N?		9 (COOLER TEMP (°C)= NA	
7. VOLATILES FREE OF HEADSPACE?	T				<u> </u>
8. TRIP BLANK PRESENT IN THIS COOLER		U I			
9. PROPER SAMPLE CONTAINERS AND VOLUME?	\mathbf{Z}_{i}				
10. SAMPLES WITHIN HOLD TIME UPON RECEIPT?	Image: Control of the control of the				
11. SAMPLES PROPERLY PRESERVED(1)?			अ	•	
12. CORRECTIVE ACTION REPORT FILED?			N/A		
13. ANALYTICAL PROGRAMS (CIRCLE ONE) COMME	RCIAL_	CLP HAZWRAP	NFESC ACOE	AFCEE OTHER (STATE OF ORIGIN):_	SC
LOG - IN NOTES ⁽¹⁾ :		`.			

0000076

Use this space (and additional sheets if necessary) to document samples that are received broken or compromised, C-O-C discrepancies, radiation checks, residual chlorine check, results of pH check if required. If samples required pH adjustment, record volume and type of preservative added.

Katahdin P.O. Box 720

CHAIN of CUSTODY

Westbrook, ME 04098 Tel: (207) 874-2400 Fax: (207) 775-4029		PLEASE PRINT IN PEN	Page \downarrow of 2
Client Tetra Toch NUS Ba	una Houze	Phone # (843) -554 492	Fax # ?< ()
Address NH2 Ang H City N	(Na cle sto	_	Zip Code
Purchase Order # Proj. Name / No.	C, 41, 43,10	Katahdin	Quote #
Bill (if different than above)	Address		
Sampler (Print / Sign) Jefo Alex goder Af	I PORK	AND Copies To:	
LAB USE ONLY WORK ORDER #: WI 3570	Elle Elle Elle	ANALYSIS AND CONTAINE PRESERVATIVES	
REMARKS:			Filt. Filt. Filt. Filt.
	2 Dis	2	
SHIPPING INFO: X FED EX UPS CLIENT AIRBILL NO: 813462954445	PAH TEK/EDI	Anions	
TEMP°C ☐ TEMP BLANK ☐ INTACT ☐ NOT INTACT	1 A 14 . WCH	2	
* Sample Description Date / Time coll'd Matrix No. of Cntrs.	TO The Land		
1996m0101 8/6/94/1107 GW 5	3 2		
199LM 39/ 1/110 GN 1	3 2		
1991m9541 + /1158 GM	3 2		
299LMØ6Ø1 3/7/4/1510	3 2		
· 339Lm\$3\$1 /\$932	3 2		
33GLMØ4Ø1 /\$93\$	3 2		
33GLMØ6Ø1 ★ /6935 ★	3 2		
33GLMØ10/8/3/9/1258 9	3 2 3	<u> </u>	
33 GLM \$ 2\$1 /13\$\$	3 2 3	3 1	
339LM (50) + /1259	3 2 3	 	
41 GLM & 361 8/9/19/10929	3 2 3	- 	
41GLM \$1 \$1 \$1920	3 2 3	 	
41GLM \$5\$1 1/0936 +	3 2 3		
41GLMOIDID x/- 5		to colo	_ +
416LM6761 /1540	3 2		
41GLM 6661 1542 + +	3 2	i i	
			÷
Relinquished By: (Signature) Date / Time Received By: (Signature)		By: (Signature) Date / Tin	ne Bedeived By (Six 3)
Relinquished By: (Signature) Received By: (Signature) Received By: (Signature) Received By: (Signature) Received By: (Signature)	_ 	By: (Signature) Date / Tim	ne Received By (Signature)

Katahdin ANALYTICAL SERVICES

340 County Road No. 5 P.O. Box 720 Westbrook, ME 04098 Tel: (207) 874-2400 Fax: (207) 775-4029

CHAIN of CUSTODY

PLEASE PRINT IN PEN

Page 2 of 2

Tetra Tech NUS	Contact	Pho (8	one # 43)564 4	f9 Z5()	
City		Sta	te	Zip Code	
Purchase Order # Page 2 Proj. Name / N	No.	-	Kata	ahdin Quote #	
Bill (if different than above)	Address				
Sampler (Print / Sign) JEAFAlexander Ana	PEA	ZEK ANDÉ	Copies To:	:	
LAB USE ONLY WORK ORDER #: WP35 70 -			VALVSIS AND CONT PRESERVATI		
KATAHDIN PROJECT MANAGER	Filt.	Filt. Filt.	Filt. Filt. Fi	it. Filt. Filt. Filt. ON OYON O	Filt. Y□N
REMARKS:	8	3480			
SHIPPING INFO: X FED EX UPS CLIE AIRBILL NO: 81344294444	4	-0			
TEMP°C ☐ TEMP BLANK ☐ INTACT ☐ NOT	INTACT ()	PAG			:
Sample Description Date / Time coll'd Matrix	No. of Cntrs.	+			
299LMOGOIM 8/7/1/1514	5 3	2	MS/MS	٥	
299LMOGOIM 3/7/1/1514 339LMOGOIM 3/8/4/-	5 3	2			
33 TL ØØ 1 Ø 1 8/9/94 -	22		TRI	PBLANE	
	_				
Managery or /	_				
/					
/					
/					
/					
/					
/					
/					
/					
/			F F		
OMMENTS			1 1		
Fulshed By: (Signature) Date / Time Received By: (\$1344)	Signature) R	elinquished By: (Si	gnature) Date /	/ Time Received BTP (Signatu	ure)
Relinquished By: (Signature) Date / Time Received By: (Signature)		elinquished By: (Si		/ Time Received By: (Signatu	ne)

KATAHDIN ANALYTICAL SERVICES, INCORPORATED New England-ME Laboratory (207) 874-2400 CONFIRMATION

CONFIRMATION Page 1 ORDER NO WP-3570 Project Manager: Andrea J. Colby ORDER DATE: 08/10/99 REPORT TO: PAUL CALLIGAN PHONE: 850/385-989 FAX: 850/385-9860 Tetra Tech NUS 1401 Oven Park Dr., Suite 102 DUE: 09 SEP Tallahassee, FL 32308 FAC. ID: CNC CHARLESTON ACCOUNTS PAYABLE PHONE: 412/921-7090 INVOICE: PO: N7912-P99264 TETRA TECH NUS, INC. FOSTER PLAZA 7, 661 ANDERSEN DR. PROJECT: CTO#68 PITTSBURGH, PA 15220 SAMPLED BY: J.ALEXANDER DELIVERED BY: FEDEX DISPOSE: AFTER 09 OCT ITEM LOG NUMBER SAMPLE DESCRIPTION SAMPLED DATE/TIME RECEIVED MATRIX WP3570-1 06 AUG 1107 19GLM0101 10 AUG AΟ WP3570-2 06 AUG 1110 19GLM0401 WP3570-3 19GLM0201 06 AUG 1158 WP3570-4 07 AUG 1510 29GLM0601 07 AUG 0930 WP3570-5 33GLM0401 WP3570-6 33GLM0601 07 AUG 0935 09 AUG WP3570-7 41GLM0101D WP3570-8 41GLM0701 09 AUG 1540 WP3570-9 41GLM0601 09 AUG 1542 WP3570-10 33GLM0201D 08 AUG DETERMINATION METHOD QTY PRICE TRUOMA Volatile Organics by 8260B SW8260 75.00 750.00 10 Polynuclear Aromatic Hydrocarbons EPA 8270 10 125.00 1250.00 TOTALS 200.00 10 2000.00 LOG NUMBER SAMPLE DESCRIPTION SAMPLED DATE/TIME RECEIVED MATRIX WP3570-11 33GLM0101 08 AUG 1258 10 AUG ΑO 08 AUG 1300 WP3570-12 33GLM0201 33GLM0501 08 AUG 1259 WP3570-13 09 AUG 0929 WP3570-14 41GLM0301 WP3570-15 41GLM0101 09 AUG 0920 WP3570-16 41GLM0501 09 AUG 0936 METHOD QTY PRICE TRUOMA DETERMINATION Volatile Organics by 8260B SW8260 6 75.00 450.00

LABORATORY ORDER CONTINUED ON PAGE 2

EPA 8270

E300

E300

Polynuclear Aromatic Hydrocarbons

GC Subcontract

TOTALS

Sulfate (as SO4)

Nitrogen, Nitrate (as N)

125.00

95.00

30.00

0.00

325.00

750.00

570.00

180.00

1950.00

0.00

6

6

6

6

KATAHDIN ANALYTICAL SERVICES, INCORPORATED New England-ME Laboratory (207) 874-2400 CONFIRMATION

Page 2

Project Manager: Andrea J. Colby ORDER NO WP-3570

ORDER DATE: 08/10/99

RT TO: PAUL CALLIGAN PHONE: 850/385-9899 R.

Tetra Tech NUS FAX: 850/385-9860 1401 Oven Park Dr., Suite 102 DUE: 09 SEP

Tallahassee, FL 32308 FAC.ID: CNC CHARLESTON

ACCOUNTS PAYABLE INVOICE:

PHONE: 412/921-7090 TETRA TECH NUS, INC. PO: N7912-P99264

FOSTER PLAZA 7, 661 ANDERSEN DR.

PITTSBURGH, PA 15220 PROJECT: CTO#68

DELIVERED BY: FEDEX SAMPLED BY: J.ALEXANDER DISPOSE: AFTER 09 OCT

SAMPLED DATE/TIME RECEIVED LOG NUMBER SAMPLE DESCRIPTION MATRIX WP3570-17 33GLM0301 07 AUG 0932 10 AUG

DETERMINATION METHOD QTY PRICE <u>T/UUOMA</u>

Polynuclear Aromatic Hydrocarbons EPA 8270 1 125.00 125.00

LOG NUMBER SAMPLE DESCRIPTION SAMPLED DATE/TIME RECEIVED WP3570-18 33TL00101 09 AUG 10 AUG ΑQ

METHOD DETERMINATION PRICE TIUOMA

Volatile Organics by 8260B SW8260 75.0**0** 75.00

ORDER NOTE: OC-IV NFESC-D

DD(KAS007QC-DB3)

CNC CHARLESTON

REPORT COPY: MS. LEE LECK

TETRA TECH NUS FOSTER PLAZA 7 661 ANDERSEN DR.

PITTSBURGH, PA 15220

REPORT AND DISK

J DICE: With Report TOTAL ORDER AMOUNT \$4,150.00 This is NOT an Invoice

AJC/BKR/KP/WEST.KP(dw)

08-19Please contact KATAHDIN ANALYTICAL SERVICES promptly if you have any questi

KATAHDIN ANALYTICAL SERVICES

Summary of Report Notes

Report Note	Note Text
#	'#' flag denotes surrogate compound recovery is out of criteria.
\$	'\$' flag denotes surrogate compound recovery is out of criteria. Re-extraction or re-analysis confirmed matrix interference.
E	'E' flag indicates an estimated value. The analyte was detected in the sample at a concentration greater than the standard calibration range.
J	'J' flag denotes an estimated value less than the Laboratory's Practical Quantitation Level.
O-13	Internal standard area(s) are out of criteria. Reanalysis confirmedmatrix interference.
0-2	Sample dilution required for quantitation of one or more target analytes; therefore, standard laboratory Practical Quantitation Level (PQL) could not be achieved.
O-6	Sample reextraction was required due to exceedance of quality control criteria. The original extraction was performed within hold time while reextraction was not within hold time. Results for the reextracted sample met all quality control criteria and are reported here.

KATAHDIN ANALYTICAL SERVICES REPORT OF ANALYTICAL RESULTS

'ient:

PAUL CALLIGAN

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP3570-4

SDG:

WP3570 9/13/99

Report Date: PO No.:

N7912-P99264

Project:

CTO#68

% Solids:

N/A

Method:

EPA 8270

Date Analyzed: 8/18/99

Sample Description	Matrix S	ampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
29GLM0601	AQ	8/7/99	8/10/99	8/13/99	DPD	EPA 3510	KRT
Compound	Resul	t Units	DF	Sample PQL	Method PQL		-
NAPHTHALENE	<10	ug/L	1.0	10	10		
2-METHYLNAPHTHALENE	<10	ug/L	1.0	10	10		
ACENAPHTHYLENE	<10	ug/L	1.0	10	10		
ACENAPHTHENE	<10	ug/L	1.0	10	10		
FLUORENE	<10	ug/L	1.0	10	10		
PHENANTHRENE	<10	ug/L	1.0	10	10		
ANTHRACENE	<10	ug/L	1.0	10	10		
FLUORANTHENE	<10	ug/L	1.0	10	10		
*YRENE	<10	ug/L	1.0	10	10		
.NZO[A]ANTHRACENE	<10	ug/L	1.0	10	10		
CHRYSENE	<10	ug/L	1.0	10	10		
BENZO[B]FLUORANTHENE	<10	ug/L	1.0	10	10		
BENZO[K]FLUORANTHENE	<10	ug/L	1.0	10	10		
BENZO[A]PYRENE	<10	ug/L	1.0	10	10		
INDENO[1,2,3-CD]PYRENE	<10	ug/L	1.0	10	10		
DIBENZ[A,H]ANTHRACENE	<10	ug/L	1.0	10	10		
BENZO[G,H,I]PERYLENE	<10	ug/L	1.0	10	10		
NITROBENZENE-D5	66	~	1.0				
2-FLUOROBIPHENYL	63	%	1.0				
TERPHENYL-D14	69	%	1.0				

: -- xeport Notes:

KATAHDIN ANALYTICAL SERVICES REPORT OF ANALYTICAL RESULTS

Client: PAUL CALLIGAN

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP3570-4

SDG:

WP3570

Report Date:

9/13/99

PO No.:

N7912-P99264

Project:

CTO#68

% Solids:

Method:

N/A

Date Analyzed:

SW8260 8/13/99

Sample Description	Matrix	Samį	pled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
29GLM0601	AQ	ε	3/7/99	8/10/99	8/13/99	КМС	5030	КМС
Compound	Ro	esult	Units	DF	Sample PQL	Method PQL		
BENZENE		<5	ug/L	1.0	5	5		
TOLUENE		<5	ug/L	1.0	5	5		
1,2-DIBROMOETHANE		<5	ug/L	1.0	5	5		
ETHYLBENZENE		<5	ug/L	1.0	5	5		
NAPHTHALENE		<5	ug/L	1.0	5	5		
MTBE		<5	ug/L	1.0	5	5		
TOTAL XYLENES		<5	ug/L	1.0	5	5		
DIBROMOFLUOROMETHANE	!	97	%	1.0				
1,2-DICHLOROETHANE-D4		87	%	1.0				
TOLUENE-D8	:	96	%	1.0				
P-BROMOFLUOROBENZENE	,	94	%	1.0				

Report Notes:

4B SEMIVOLATILE ORGANICS METHOD BLANK SUMMARY

EPA SAMPLE NO.

SBLK;081399

Lab Name: Katahdin Analytical Services

SDG No.: WP3570

Lab File ID:

Z1740

Lab Sample ID: SBLK;081399

Instrument ID:

5972-Z

Date Extracted: 8/13/99

GC Column: RTX-624 ID: 0.18

(mm)

Date Analyzed: 08/16/99

Matrix: (soil/water) WATER

Time Analyzed: 13:03

Level: (low/med) LOW

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, LCS'S, MS AND MSD'S

Client Sample ID	Lab Sample ID	Lab Data File	Date Injected	Time Injected
29GLM0601MS	WP3570-4MS	Z1746	8/16/99	5:45:00 PM
29GLM0601MSD	WP3570-4MSD	Z1747	8/16/99	6:31:00 PM
41GLM0101D	WP3570-7	21750	8/16/99	8:51:00 PM
41GLM0701	WP3570-8	Z1755	8/17/99	2:23:00 PM
33GLM0201D	WP3570-10	Z1757	8/17/99	3:56:00 PM
33GLM0201	WP3570-12	Z1759	8/17/99	5:30:00 PM
41 GLM0301	WP3570-14	Z1761	8/17/99	7:04:00 PM
41GLM0101	WP3570-15	Z1762	8/17/99	7:51:00 PM
41GLM0501	WP3570-16	Z1763	8/17/99	8:38:00 PM
33GLM0301	WP3570-17	Z1764	8/17/99	9:26:00 PM
LCS;081399	LCS;081399	Z1765	8/17/99	10:14:00 PM
33GLM0601	WP3570-6	Z1770	8/18/99	9:25:00 AM
19GLM0101	WP3570-1	Z1771	8/18/99	10:13:00 AM
19GLM0501	WP3570-3	Z1772	8/18/99	11:00:00 AM
19GLM0401	WP3570-2	Z1773	8/18/99	11:49:00 AM
29GLM0601	WP3570-4	Z1774	8/18/99	12:35:00 PM
33GLM0401	WP3570-5	Z1775	8/18/99	1:23:00 PM
41 GLM0601	WP3570-9	Z1776	8/18/99	2:10:00 PM
33GLM0101	WP3570-11	Z1777	8/18/99	2:56:00 PM
33GLM0501	WP3570-13	Z1778	8/18/99	3:42:00 PM
33GLM0301	WP3570-17RA	Z1779	8/18/99	4:29:00 PM
19GLM0101	WP3570-1DL	Z1780	8/18/99	5:19:00 PM
19GLM0401	WP3570-2DL	Z1781	8/18/99	6:05:00 PM

KATAHDIN ANALYTICAL SERVICES REPORT OF ANALYTICAL RESULTS

Client:

PAUL CALLIGAN

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

SBLK;081399

SDG:

WP3570

Report Date: PO No.:

9/13/99

Project:

N7912-P99264 CTO#68

% Solids:

N/A

Method:

EPA 8270

8/16/99 Date Analyzed:

Sample Description	Matrix San	npled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
SBLK;081399	AQ	-	*	8/13/99	DPD	EPA 3510	KRT
Compound	Result	Units	DF	Sample PQL	Method PQL		
NAPHTHALENE	<10	ug/L	1.0	10	10		
2-METHYLNAPHTHALENE	<10	ug/L	1.0	10	10		
ACENAPHTHYLENE	<10	ug/L	1.0	10	10		
ACENAPHTHENE	<10	ug/L	1.0	10	10		
FLUORENE	<10	ug/L	1.0	10	10		
PHENANTHRENE	<10	ug/L	1.0	10	10		
ANTHRACENE	<10	ug/L	1.0	10	10		
FLUORANTHENE	<10	ug/L	1.0	10	10		
PYRENE	<10	ug/L	1.0	10	10		
BENZO[A]ANTHRACENE	<10	ug/L	1.0	10	10		
CHRYSENE	<10	ug/L	1.0	10	10		
BENZO[B]FLUORANTHENE	<10	ug/L	1.0	10	10		
BENZO[K]FLUORANTHENE	<10	ug/L	1.0	10	10		
BENZO[A]PYRENE	<10	ug/L	1.0	10	10		
INDENO[1,2,3-CD]PYRENE	<10	ug/L	1.0	10	10		
DIBENZ[A,H]ANTHRACENE	<10	ug/L	1.0	10	10		
BENZO[G,H,I]PERYLENE	<10	ug/L	1.0	10	10		
NITROBENZENE-D5	46	%	1.0				
2-FLUOROBIPHENYL	48	%	1.0				
TERPHENYL-D14	64	%	1.0				

Report Notes:

Katahdin Analytical Services 8270 LCS Recovery Sheet

Lab File: Z1765

Sample ID: LCS;081399

Date Run: 8/17/99

Analyst: KRT

Time Injected 10:14:00 PM

Matrix: AQ

Compound Name	Spike Amt (ug/L)	Result (ug/L)	Rec (%)	Limits (%)
2-METHYLNAPHTHALENE	50	47.8	96	70-130
ACENAPHTHENE	50	50.4	101	70-130
ACENAPHTHYLENE	50	50.8	102	70-130
ANTHRACENE	50	55.6	111	70-130
BENZO[A]ANTHRACENE	50	51.2	102	70-130
BENZO[A]PYRENE	50	50.0	100	70-130
BENZO[B]FLUORANTHENE	50	47.7	95	70-130
BENZO[G,H,I]PERYLENE	50	46.7	93	70-130
BENZO[K]FLUORANTHENE	50	58.9	118	70-130
CHRYSENE	50	53.8	108	70-130
DIBENZ[A,H]ANTHRACENE	50	45.0	90	70-130
FLUORANTHENE	50	52.4	105	70-130
FLUORENE	50	49.2	98	70-130
INDENO[1,2,3-CD]PYRENE	50	40.5	81	70-130
NAPHTHALENE	50	48.7	97	70-130
PHENANTHRENE	50	53.3	106	70-130
PYRENE	50	55.6	111	70-130

Katahdin Analytical Services MS/MSD Report

Sample	File Name	Date Acquired	Time inj	Analyst	Matrix	Method
WP3570-4	Z1774	8/18/99	12:35:00 PM	KRT	AQ	8270_99
WP3570-4MS	Z1746	8/16/99	5:45:00 PM	KRT	AQ	8270_99
WP3570-4MSD	Z1747	8/16/99	6:31:00 PM	KRT	AQ	8270_99

Compound Name	Native (ug/L)	MS Spk Amount (ug/L)	MSD Spk Amount (ug/L)	MS Result (ug/L)	MSD Result (ug/L)	MS REC (%)	MSD REC (%)	Recovery Limits (%)	RPD (%)	RPD Limit (%)
CHRYSENE	0	47	48	19.8	31.8	*42	66	60-140	*46	30
ACENAPHTHENE	0	47	48	23.1	26.9	*49	*56	60-140	15	30
ACENAPHTHYLENE	0	47	48	24.2	26.6	*51	*55	60-140	9.4	30
ANTHRACENE	0	47	48	24.1	33.6	*51	70	60-140	*33	30
BENZO[A]ANTHRACENE	0	47	48	18.4	30.4	*39	63	60-140	*49	30
BENZO[A]PYRENE	0	47	48	15.1	25.4	*32	*53	60-140	*51	30
BENZO[B]FLUORANTHENE	0	47	48	13.7	23.2	*29	*48	60-140	*51	30
2-METHYLNAPHTHALENE	0	47	48	21.6	23.5	*46	*49	60-140	8.4	30
BENZO[K]FLUORANTHENE	0	47	48	18.0	29.0	*38	60	60-140	*47	30
PYRENE	0	47	48	22.8	32.2	*48	67	60-140	*34	30
DIBENZ[A,H]ANTHRACENE	0	47	48	12.3	22.6	*26	*47	60-140	*59	30
FLUORANTHENE	0	47	48	20.4	31.4	*44	65	60-140	*42	30
FLUORENE	0	47	48	21.5	27.1	*46	*56	60-140	23	30
INDENO[1,2,3-CD]PYRENE	0	47	48	12.1	25.5	*26	*53	60-140	•71	30
NAPHTHALENE	0	47	48	23.3	23.4	*50	*49	60-140	0.43	30
PHENANTHRENE	0	47	48	22.9	28.5	*49	*59	60-140	22	30
BENZO[G,H,I]PERYLENE	0	47	48	12.8	23.0	*27	*48	60-140	*57	30

4A VOLATILE ORGANICS METHOD BLANK SUMMARY

EPA SAMPLE NO.

VBLKQ13A

Lab Name: Katahdin Analytical Services

SDG No.: WP3570

Lab Sample ID: VBLKQ13A

Lab File ID:

Q6291

Date Analyzed: 08/13/99

Time Analyzed: 11:30

GC Column: RTX-502 ID: 0.53

(mm)

Heated Purge: (Y/N) N

Instrument ID: 5970-Q

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, LCS'S, MS AND MSD'S

Client Sample ID	Lab Sample ID	Lab Data File	Date Injected	Time Injected
LCSQ13A	LCSQ13A	Q6290	8/13/99	10:40:00 AM
19GLM0101	WP3570-1	Q6297	8/13/99	3:39:00 PM
19GLM0401	WP3570-2	Q6298	8/13/99	4:18:00 PM
19GLM0501	WP3570-3	Q6299	8/13/99	4:56:00 PM
29GLM0601	WP3570-4	Q6300	8/13/99	5:35:00 PM
33GLM0401	WP3570-5	Q6301	8/13/99	6:14:00 PM
33GLM0601	WP3570-6	Q6302	8/13/99	6:53:00 PM
41GLM0101D	WP3570-7	Q6303	8/13/99	7:32:00 PM
41 GLM0701	WP3570-8	Q6304	8/13/99	8:11:00 PM

KATAHDIN ANALYTICAL SERVICES REPORT OF ANALYTICAL RESULTS

Client: PAUL CALLIGAN

> Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

VBLKQ13A

SDG:

WP3570

Report Date:

9/13/99

PO No.;

N7912-P99264

Project:

CTO#68

% Solids:

N/A

Method:

Date Analyzed: 8/13/99

SW8260

Sample Description	Matrix	Sampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst	
VBLKQ13A	AQ	AQ -		8/13/99	KMC	5030	KMC	
Compound	Res	ult Units	DF	Sample PQL	Method PQL			
BENZENE	<5	5 ug/L	1.0	5	5		W/ 18	
TOLUENE	<5	ug/L	1.0	5	5			
1,2-DIBROMOETHANE	<5	ug/L	1.0	5	5			
ETHYLBENZENE	<5	ug/L	1.0	5	5			
NAPHTHALENE	<5	s ug/L	1.0	5	5			
MTBE	<5	5 ug/L	1.0	5	5			
TOTAL XYLENES	<5	i ug/L	1.0	5	5			
DIBROMOFLUOROMETHANE	89	%	1.0					
1,2-DICHLOROETHANE-D4	81	%	1.0					
TOLUENE-D8	94	% %	1.0					
P-BROMOFLUOROBENZENE	93	3 %	1,0					

Report Notes:

Katahdin Analytical Services 8260 LCS Recovery Sheet

Lab File: Q6290

Sample ID: LCSQ13A

Date Run: 8/13/99

Analyst: KMC

Time Injected 10:40:00 AM

Matrix: AQ

Compound Name	Spike Amt (ug/L)	Result (ug/L)	Rec (%)	Limits (%)
1,2-DIBROMOETHANE	50	57.0	114	60-140
BENZENÉ	50	57.4	115	60-140
ETHYLBENZENE	50	57.3	115	60-140
MTBE	50	51.8	104	60-140
NAPHTHALENE	50	53.7	107	60-140
TOLUENE	50	57.0	114	60-140
TOTAL XYLENES	150	160	107	60-140

4A VOLATILE ORGANICS METHOD BLANK SUMMARY

EPA SAMPLE NO.

VBLKQ17A

Lab Name: Katahdin Analytical Services

SDG No.: WP3570

Lab File ID:

Q6338

Lab Sample ID: VBLKQ17A

Date Analyzed: 08/17/99

Time Analyzed: 10:56

GC Column: RTX-502 ID: 0.53

(mm)

Heated Purge: (Y/N) N

Instrument ID: 5970-Q

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, LCS'S, MS AND MSD'S

Client Sample ID	Lab Sample ID	Lab Data File	Date Injected	Time Injected
LCSQ17A	LCSQ17A	Q6337	8/17/99	9:49:00 AM
41GLM0301	WP3570-14	Q6343	8/17/99	2:38:00 PM
41GLM0301MS	WP3570-14MS	Q6344	8/17/99	3:17:00 PM
41GLM0301MSD	WP3570-14MSD	Q6345	8/17/99	3:56:00 PM

KATAHDIN ANALYTICAL SERVICES REPORT OF ANALYTICAL RESULTS

'ent:

PAUL ÇALLIGAN

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

VBLKQ17A

SDG:

WP3570

Report Date: PO No.:

9/13/99 N7912-P99264

Project:

CTO#68

% Solids:

N/A

Method:

SW8260

Date Analyzed: 8/17/99

Sample Description	Matrix	Sampled Date	Rec'd Date Ext. Date		Ext'd By	Ext. Method	Analyst
VBLKQ17A	AQ	- QA		8/17/99	KMÇ	5030	КМС
Compound	Resu	ult Units	DF	Sample PQL	Method PQL		
BENZENE	<5	ug/L	1.0	5	5		
TOLUENE	<5	ug/L	1.0	5	5		
1,2-DIBROMOETHANE	<5	ug/L	1.0	5	5		
ETHYLBENZENE	<5	ug/L	1.0	5	5		
NAPHTHALENE	<5	ug/L	1.0	5	5		
MTBE	<5	ug/L	1.0	5	5		
TOTAL XYLENES	<5	ug/L	1.0	5	5		
DIBROMOFLUOROMETHANE	93	%	1.0				
~:-DICHLOROETHANE-D4	80	%	1.0				
LUENE-D8 ارس	102	. %	1.0				
P-BROMOFLUOROBENZENE	100	96	1.0				

Report Nates:

Katahdin Analytical Services 8260 LCS Recovery Sheet

Lab File: Q6337

Sample ID: LCSQ17A

Date Run: 8/17/99

Analyst: KMC

Time Injected 9:49:00 AM

Matrix: AQ

Compound Name	Spike Amt (ug/L)	Result (ug/L)	Rec (%)	Limits (%)
1,2-DIBROMOETHANE	50	55.0	110	60-140
BENZENE	50	48.5	97	60-140
ETHYLBENZENE	50	53.7	107	60-140
MTBE	50	43.2	86	60-140
NAPHTHALENE	50	53.5	107	60-140
TOLUENE	50	51.4	103	60-140
TOTAL XYLENES	150	149	99	60-140

Katahdin Analytical Services MS/MSD Report

mple	File Name	Date Acquired	Time inj	Analyst	Matrix	Method
WP3570-14	Q6343	8/17/99	2:38:00 PM	KMC	AQ	8260_99
WP3570-14MS	Q6344	8/17/99	3:17:00 PM	KMC	AQ	8260_99
WP3570-14MSD	Q6345	8/17/99	3:56:00 PM	KMC	AQ	8260_99

Compound Name	Native (ug/L)	MS Spk Amount (ug/L)	•	MS Result (ug/L)	MSD Result (ug/L)	MS REC (%)	MSD REC (%)	Recovery Limits (%)	RPD (%)	RPD Limit (%)
TOTAL XYLENES	0	150	150	157	159	104	106	60-140	1.3	20
TOLUENE	0	50	50	53.1	51.6	106	103	60-140	2.9	20
NAPHTHALENE	0	50	50	49.5	56.0	99	112	60-140	12	20
MTBE	0	50	50	43.6	42.9	87	86	60-140	1.6	20
ETHYLBENZENE	0	5Ū	50	56.6	56.3	113	112	60-140	0.53	20
BENZENE	0	50	50	50.8	48,4	102	97	60-140	4.8	·20
1,2-DIBROMOETHANE	0	50	50	53.6	53.3	107	106	60-140	0.56	20

August 31, 1999

Mr. Paul Calligan

Tetra Tech Nus

1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

RE: Katahdin Lab Number:

WP3417

Project ID:

CNC Charleston

Project Manager:

Ms. Andrea J.Colby

Sample Receipt Date(s):

7/28/99

Dear Mr. Calligan:

Please find enclosed the following information:

- Report of Analysis
- Quality Control Data Summary
- Chain of Custody
- Confirmation

Should you have any questions or comments concerning this Report of Analysis, please do not hesitate to contact the project manager listed above. This cover letter is an integral part of the ROA.

We appreciate your continued use of our laboratory and look forward to working with you in the future. The following signature indicates technical review and acceptance of the data.

Sincerely,

KATAHDIN ANALYTICAL SERVICES

Mary S. Mouil
Authorized Signature

SDG NARRATIVE KATAHDIN ANALYTICAL SERVICES TETRA TECH NUS CASE CNC CHARLESTON

Sample Receipt

The following samples were received on July 28, 1999 and were logged in under Katahdin Analytical Services work order number WP3417 for a hardcopy due date of August 27, 1999.

TTNUS
Sample Identification
31GLM0201
29GLM0301
31GLM0101D
30GLM1201
12GLM0401
29TL00901
31GLM0101
29GLM0701

The samples were logged in for the analyses specified on the chain of custody form. All problems encountered and resolved during sample receipt have been documented on the applicable chain of custody forms.

Sample analyses have been performed by the methods as noted herein.

Volatile Organic Analysis

Six aqueous samples were received by the Katahdin Analytical Services, Inc. GC/MS laboratory on July 28, 1999 and were specified to be analyzed by USEPA method 8260B for the analytes benzene, toluene, ethylbenzene, xylenes, MTBE, naphthalene, and EDB.

Analyses for this work order were performed on the 5972-S and 5970-Q instruments. A VSTD050 (50 ppb standard) was used for the continuing calibration standard. Internal standard and surrogate compounds were also spiked at 50 ug/l.

Batch QC (VBLK, and LCS) was performed in each twelve-hour window. Results are included in this data package. The LCS QC samples were spiked with the entire list of compounds quantitated for at 50 ppb. No matrix spike/matrix spike duplicate was performed on any of the samples in this work order.

Method 8000B, section 7.5.1.2.1 (Revision 2, 12/96) states, "in those instances where the RSD for one or more analytes exceeds 20%, the initial calibration curve may still be acceptable if the mean of the RSD values for all analytes in the calibration is less than or equal to 20%." Method 8260B narrows this 20% maximum to 15%.

In the calibration curves analyzed in this SDG, the average %RSD for all analytes was 13.7% and 15.0%, making the curves acceptable.

Several manual integrations were performed due to split peaks; all have been flagged with a "M" (software-generated) on the pertinent quantitation reports. All "M" flags have been dated and initialed by the analyst performing the integration. In addition, all "M" flags have been reviewed and approved by the GC/MS supervisor. Copies of each manual integration are included in the pertinent quantitation reports.

No other protocol deviations were noted by the volatile organics staff.

Semivolatile Organic Analysis

Six aqueous samples were received by Katahdin Analytical Services laboratory on July 28, 1999 for analysis in accordance with 8270C for a client specified PAH list of analytes.

Extraction of the samples occurred following USEPA method 3510 on July 29, 1999. A laboratory control spike, consisting of all PAH analytes spiked into organic free water, was extracted in the batch, along with a site specific MS/MSD pair on sample WP3417-8.

The initial calibration curve analyzed in this SDG had some of the target analyte %RSD values exceeding 15 %.

Method 8000B, section 7.5.1.2.1 (Revision 2, 12/96) states, "in those instances where the RSD for one or more analytes exceeds 20%, the initial calibration curve may still be acceptable if the mean of the RSD values for all analytes in the calibration is less than or equal to 20%." Section 7.3.7.1 of method 8270C (revision 3, 12/96) narrows this 20% maximum to 15%.

In the calibration curve analyzed in this SDG, the average %RSD for all analytes was 10.1%, making the curve acceptable.

Initial analysis of sample WP3417-3 yielded a low recovery of the surrogate 2-fluorobiphenyl. Reanalysis yielded two low base-neutral surrogate recoveries. Both sets of data for this sample are included in the data package.

Initial analysis of sample WP3417-8 yielded internal standard area recovery deviations. Reanalysis yielded similar results, confirming matrix interference. Both sets of data are included in this data package.

Analysis of the QC sample WP3417-8MS yielded a low recovery of the surrogate terphenyl-d14.

Several manual integrations were performed due to split peaks; all have been flagged with a "M" by the data system. All manual integrations have been dated and initialed by the responsible analyst. Copies of each manual integration are included in the data package. All manual integrations have been reviewed and approved by the GC/MS supervisor.

No other protocol deviations were noted by the semivolatiles organics staff.

Wet Chemistry Analysis

For work order WP3417 analyses for Nitrate (E300) and Sulfate (E300) were performed according to the U.S. EPA "Methods for the Determination of Inorganic Substances in Environmental Samples", EPA 600/R-93/100, August 1993. All samples were run within laboratory hold time. The wet chemistry staff noted no protocol deviations.

KATAHDIN ANALYTICAL SERVICES				LAB (WORK ORDER) #	WY 3417
SAMPLE RECEIPT CONDITION REPORTER. (207) 874-2400	JKI			PAGE:	of Z
Fax (207) 775-4029					
		***		COOLER:	_OF
· · ·				COC# ~~	
CLIENT: Tetra Tech				S DG#	
				DATE / TIME RECEIVED:_	7-28-99 0905
				DELIVERED BY:	Fedex
PROJECT: CNC				RECEIVED BY: LIMS ENTRY BY:	Sau Sau
FROJECT.	_	_		LIMS REVIEW BY / PM:	
	YES	NO	EXCEPTIONS	COMMENTS	RESOLUTION
1. CUSTODY SEALS PRESENT / INTACT?					
2. CHAIN OF CUSTODY PRESENT IN THIS COOLER?		\mathbf{Q}			
3. CHAIN OF CUSTODY SIGNED BY CLIENT?	a			coc not signed by samplex	
4. CHAIN OF CUSTODY MATCHES SAMPLES?		4			ACC notificed Voullake
5. TEMPERATURE BLANKS PRESENT?	₽			TEMP BLANK TEMP (°C)= 1.Z	by for 7/28/99
6. SAMPLES RECEIVED AT 4°C +/- 2? (ICE) ICE PACKS PRESENT (Y) or N?		☑		COOLER TEMP (°C)= NA (RECORD COOLER TEMP ONLY IF TEMP	BLANK IS NOT PRESENT)
7. VOLATILÉS FREE OF HEADSPACE?					
8. TRIP BLANK PRESENT IN THIS COOLER					
9. PROPER SAMPLE CONTAINERS AND VOLUME?					
10. SAMPLES WITHIN HOLD TIME UPON RECEIPT?					
11. SAMPLES PROPERLY PRESERVED(1)?				·	
12. CORRECTIVE ACTION REPORT FILED?			N/A		
13. ANALYTICAL PROGRAMS (CIRCLE ONE) COMM	ERCIAL_	CLP HA	ZWRAP (NFESC)	ACOE AFCEE OTHER (STATE OF ORIGIN):	
LOG-IN NOTES(1): Sample	1.D. s :	•31	GLM Ø101 GLM Ø701)	
1		.29	GLM0701	(VOA VIALS	
		.29	GLMOTO	IM (MSMSD) NOT RECEIVE	(ED)
L ₁	CLIE	NT	NOTIFIED PRI	0J.MNGR. ~ LOG-IN NOT	PEROPT.

Use this * (and additional sheets if necessary) to document samples that are received broke check if r. d. If samples required pH adjustment, record volume and type of preservative ad

compromised, C-O-C discrepancies, radiation checks, residual chlorine check, re

of pH

KATAH ANALYTICAL SERVICES, SAMPLE RECEIPT CONDITION REPO Tel. (207) 874-2400 Fax (207) 775-4029 CLIENT: TetraTech PROJECT:		·~·		LAB (WORK ORDER) # WP3417 PAGE: 2 OF 2 COOLER: 7 OF 2 COC# SDG# SDG# SDG# THE PECEIVED: 7.28.99 0905 DELIVERED BY: Fed Ex RECEIVED BY: Saw LIMS ENTRY BY: SAW
	•			LIMS REVIEW BY / PM:
1. CUSTODY SEALS PRESENT / INTACT? 2. CHAIN OF CUSTODY PRESENT IN THIS COOLER? 3. CHAIN OF CUSTODY SIGNED BY CLIENT? 4. CHAIN OF CUSTODY MATCHES SAMPLES? 5. TEMPERATURE BLANKS PRESENT? 6. SAMPLES RECEIVED AT 4°C.±/-2? (CE) ICE PACKS PRESENT (Y) or N? 7. VOLATILES FREE OF HEADSPACE? 8. TRIP BLANK PRESENT IN THIS COOLER 9. PROPER SAMPLE CONTAINERS AND VOLUME? 10. SAMPLES WITHIN HOLD TIME UPON RECEIPT? 11. SAMPLES PROPERLY PRESERVED(1)? 12. CORRECTIVE ACTION REPORT FILED? 13. ANALYTICAL PROGRAMS (CIRCLE ONE) COMME			EXCEPTIONS O N/A ZWRAP NFESC AC	TEMP BLANK TEMP (°C)= 0,8 by for 7/38/29 COOLER TEMP (°C)= NA (RECORD COOLER TEMP DNLY IF TEMP BLANK IS NOT PRESENT) OE AFCEE OTHER (STATE OF ORIGIN):
			•	

⁽¹⁾ Use this space (and additional sheets if necessary) to document samples that are received broken or compromised, C-O-C discrepancies, radiation checks, residual chlorine check, results of pH check if required. If samples required pH adjustment, record volume and type of preservative added.

.atahdin |

340 County Road No. 5 P.O. Box 720 Westbrook, ME 04098 Tel: (207) 874-2400

CHAIN of CUSTODY

PLEASE PRINT IN PEN Page Contact Fax # etra Tech NUS Inc (843)8149080 City N. Charleston Purchase Order # Proj. Name / No. Katahdin Quote # Bill (if different than above) Address Sampler (Print / Sign) Copies To: ANALYSIS AND CONTAINER TYPE WORK ORDER #: WP3417 - * LAB USE ONLY PRESERVATIVES Filt. KATAHDIN PROJECT MANAGER REMARKS: ☐ FED EX UPS CLIENT SHIPPING INFO: AIRBILL NO: T ☐ TEMP BLANK □ INTACT □ NOT INTACT TEMP°C_ Date / Time coll'd No. of Sample Description Matrix Cntrs. 727.99/1055 3 31GLMØ1Ø1 GW ス 31GLM Ø 201 10550 9 3 2 31GLMØIØID ス 29GLMØ3Ø1 29GLMØ7Ø1 2 M\$/MSD 29 GLM Ø7 Ø IM #2GLMØ4ØI 3ØGLM12Ø1 2 2971184991 COMMENTS Sample #29GLMØ7ØIM is an MS/MSD Date, / Relinquished By: (Signature) Received By: (Signature) Relinquished By: (Signature) Date / Time Received By: (Siç 813402904543 <u>728-99090</u>9 Relinquished By: (Signature) Date / Time Received By: (Signature) Relinquished By: (Signature) Received By: (Signature) Date / Time

KATAHDIN ANALYTICAL SERVICES, INCORPORATED New England-ME Laboratory (207) 874-2400 CONFIRMATION

Page 1

ORDER NO WP-3417 Project Manager: Andrea J. Colby ORDER DATE: 07/28/99 RT TO: Paul Calligan PHONE: 850/385-9899 Tetra Tech NUS FAX: 850/385-9860 1401 Oven Park Dr., Suite 102 DUE: 27 AUG Tallahassee, FL 32308 FAC.ID: CNC CHARLESTON ACCOUNTS PAYABLE INVOICE: PHONE: 412/921-7090 TETRA TECH NUS, INC. PO: N7912-P99264 FOSTER PLAZA 7, 661 ANDERSEN DR. PITTSBURGH, PA 15220 PROJECT: CTO #68 SAMPLED BY: CLIENT DELIVERED BY: FEDEX DISPOSE: AFTER 27 AUG ITEM LOG NUMBER SAMPLE DESCRIPTION SAMPLED DATE/TIME RECEIVED MATRIX WP3417-1 31GLM0201 27 JUL 1050 28 JUL ΑQ 27 JUL 1010 WP3417-2 29GLM0301 **DETERMINATION** METHOD **OTY** PRICE AMOUNT Volatile Organics by 8260B SW8260 75.00 2 150.00 GC Subcontract 95.00 2 190.00 Polynuclear Aromatic Hydrocarbons 2 EPA 8270 125.00 250.00 Nitrogen, Nitrate (as N) E300 2 30.00 60.00 Sulfate (as SO4) E300 2 0.00 0.00 TOTALS 2 325.00 650.00 LOG NUMBER SAMPLE DESCRIPTION SAMPLED DATE/TIME RECEIVED MATRIX WP3417-3 31GLM0101D 27 JUL 1055 28 JUL ΑQ WP3417-4 30GLM1201 27 JUL 1721 DETERMINATION METHOD YTO PRICE **AMOUNT** Volatile Organics by 8260B SW8260 2 75.00 150.00 Polynuclear Aromatic Hydrocarbons EPA 8270 2 125.00 250.00 TOTALS 2 200.00 400.00 LOG NUMBER SAMPLE DESCRIPTION SAMPLED DATE/TIME RECEIVED MATRIX 28 JUL WP3417-5 12GLM0401 24 JUL 1605 AO

27 JUL 0730

METHOD

SW8260

WP3417-6

DETERMINATION

29TL00901

Volatile Organics by 8260B

PRICE

75.00

TMUOMA

150.00

KATAHDIN ANALYTICAL SERVICES, INCORPORATED New England-ME Laboratory (207) 874-2400 CONFIRMATION

Page 2

ORDER NO WP-3417 Project Manager: Andrea J. Colby

ORDER DATE: 07/28/99

RECEIVED

250.00

250.00

REPORT TO: Paul Calligan
PHONE: 850/385-989
Tetra Tech NUS
FAX: 850/385-986

Tetra Tech NUS FAX: 850/385-986.
1401 Oven Park Dr., Suite 102 DUE: 27 AUG

Tallahassee, FL 32308 FAC.ID: CNC CHARLESTON

INVOICE: ACCOUNTS PAYABLE PHONE: 412/921-7090

TETRA TECH NUS, INC. PO: N7912-P99264

SAMPLED DATE/TIME

FOSTER PLAZA 7, 661 ANDERSEN DR.

PITTSBURGH, PA 15220 PROJECT: CTO #68

SAMPLED BY: CLIENT DELIVERED BY: FEDEX DISPOSE: AFTER 27 AUG

4	WP3417-7 31GLM0101		27 JUL	1055	28 JUI	. AQ
	DETERMINATION		METHOD	OTY	PRICE	AMOUNT
	GC Subcontract			1	95.00	95.00
	Polynuclear Aromatic F	Hydrocarbons	EPA 8270	1	125.00	125.00
	Nitrogen, Nitrate (as	N)	E300	1	30.00	30.00
	Sulfate (as SO4)		E300	1	0.00	0.00
	•					

	<u>LŌG NŪMBER</u>	SAMPLE DESCRIPTION	SAMPLED DATE/	TIME	RECEIVED	MATRIX
5	WP3417-8	29GLM0701	27 JUL :	1245	28 JUL	F^
		037	MERIOD	0.003.5	<i>DD</i>	3.401DIT
	DETERMINATION	ON	METHOD (YTÇ	PRICE	AMOUNT

DETERMINATION METHOD OTY PRICE AMOUNT Polynuclear Aromatic Hydrocarbons EPA 8270 1 125.00 125.00

ORDER NOTE: QC-IV NFESC

TOTALS

DD(KAS007QC-DB3)

CNC CHARLESTON

LOG NUMBER SAMPLE DESCRIPTION

REPORT COPY: MS LEE LECK

TETRA TECH NUS FOSTER PLAZA 7 661 ANDERSEN DR.

PITTSBURG, PA 15220

INVOICE: With Report

TOTAL ORDER AMOUNT

\$1,575.0

This is NOT an Invoic

AJC/BKR

07-28Please contact KATAHDIN ANALYTICAL SERVICES promptly if you have any questi

KATAHDIN ANALYTICAL SERVICES Summary of Report Notes

Report Note	Note Text
#	# flag denotes surrogate compound recovery is out of criteria.
0-13	Internal standard area(s) are out of criteria. Reanalysis confirmedmatrix interference.

CLIENT: Paul Calligan

Tetra Tech NUS

1401 Oven Park Dr., Suite 102

Tallahassee, FL 32308

Lab Number: WP-3417-2

Report Date: 08/31/99

: N7912-P99264

Project : CTO #68

PO No.

WIC#: CNC CHARLESTON

REPORT OF ANALYTICAL RESULTS

Page 2 of 3

SAMPLE DESCRIPTION	EAM	TRIX		SAMPLED	ву	SAMPLED D	ATE	RECEIVED
29GLM0301	Aqu	ieous		CLIENT		07/27/9	9	07/28/99
PARAMETER	RESULT	UNITS	DF	*PQL	METHOD	ANALYZED	BY	NOTES
Nitrogen, Nitrate (as N) Sulfate (as SO4)	0.066 8.6	mg/L mg/L	1.0	0.050 1.0	E300 E300	07/28/99 08/14/99		

^{*} PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect samplespecific reporting limits. Sample-specific limits are indicated by results annotated with '<' values.

08/31/99

LJO/baeajc(dw)/msm PG28N3W1

CC: MS LEE LECK
TETRA TECH NUS
FOSTER PLAZA 7
661 ANDERSEN DR.

KATAHDIN ANALYTICAL SERVICES **REPORT OF ANALYTICAL RESULTS**

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP3417-2

SDG;

WP3417

Report Date:

8/26/99

PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

N/A

Method:

EPA 8270

Date Analyzed: 8/11/99

Sample Description	Matrix	Sampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst	
29GLM0301	AQ	AQ 7/27/99		7/29/99	DPD	EPA 3510	KRT	
Compound	Res	sult Units	DF	Sample PQL	Method PQL			
NAPHTHALENE	<1	0 ug/L	1.0	10	10			
2-METHYLNAPHTHALENE	<1	IO ug/L	1.0	10	10			
ACENAPHTHYLENE	<1	IO ug/L	1.0	10	10			
ACENAPHTHENE	<1	lO ug/L	1.0	10	10			
FLUORENE	<1	10 ug/L	1.0	10	10			
PHENANTHRENE	<1	10 ug/L	1.0	10	10			
ANTHRACENE	<1	10 ug/L	1.0	10	10			
FLUORANTHENE	<1	10 ug/L	1.0	10	10			
PYRENE	<1	10 ug/L	1.0	10	10			
NZO[A]ANTHRACENE	<1	10 ug/L	1.0	10	10			
⊌HRYSENE	<	10 ug/L	1.0	10	10			
BENZO[B]FLUORANTHENE	<1	10 ug/L	1.0	10	10			
BENZO[K]FLUORANTHENE	<1	10 ug/L	1.0	10	10			
BENZO[A]PYRENE	<	10 ug/L	1.0	10	10			
INDENO[1,2,3-CD]PYRENE	<	10 ug/L	1.0	10	10			
DIBENZ[A,H]ANTHRACENE	<1	10 ug/L	1.0	10	10			
BENZO[G,H,I]PERYLENE	<	10 ug/L	1.0	10	10			
NITROBENZENE-D5	6	1 %	1.0					
2-FLUOROBIPHENYL	6	3 %	1.0					
TERPHENYL-D14	7	75 %	1.0					

port Notes:

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP3417-2

SDG:

WP3417 8/26/99

Report Date: PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

N/A

Method:

SW8260

Date Analyzed:

7/31/99

Matrix S	Sampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
	7/27/99	7/28/99	7/31/99	НМР	5030	НМР
Resu	uit Units	DF	Sample PQL	Method PQL		
<5	ug/L	1.0	5	5		
<5	ug/L	1,0	5	5		
<5	ug/L	1.0	5	5		
<5	ug/L	1.0	5	5		
<5	ug/L	1.0	5	5		
<5	ug/L	1.0	5	5		
<5	ug/L	1.0	5	5		
94	%	1.0				
95	%	1.0				
90	%	1.0				
92	%	1.0				
	AQ Resu	Result Units Second	Result Units DF <5	AQ 7/27/99 7/28/99 7/31/99 Result Units DF Sample PQL <5	AQ 7/27/99 7/28/99 7/31/99 HMP Result Units DF Sample PQL Method PQL <5	AQ 7/27/99 7/28/99 7/31/99 HMP 5030 Result Units DF Sample PQL Method PQL <5

Report Notes:

"ent:

Paul Calligan

Tetra Tech NUS

1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP3417-6

SDG:

WP3417 8/26/99

Report Date: PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

N/A

Method:

SW8260

Date Analyzed:

8/3/99

Sample Description	Matrix	Sam	pled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
29TL00901	AQ	7.	/27/99	7/28/99	8/3/99	КМС	5030	КМС
Compound	R	esult	Units	DF	Sample PQL	Method PQL		
BENZENE		< 5	ug/L	1.0	5	5		
TOLUENE		<5	ug/L	1.0	5	5		
1,2-DIBROMOETHANE		<5	ug/L	1.0	5	5		
ETHYLBENZENE		<5	ug/L	1.0	5	5		
NAPHTHALENE		<5	ug/L	1.0	5	5		
MTBE		< 5	ug/L	1.0	5	5		
TOTAL XYLENES		<5	ug/L	1.0	5	5		
DIBROMOFLUOROMETHANE		113	%	1.0				
12-DICHLOROETHANE-D4		116	%	1.0				
LUENE-D8		112	%	1.0				
F-BROMOFLUOROBENZENE		91	%	1.0				

report Notes:

Client: Paul Calligan

> Tetra Tech NUS 1401 Oven Park Dr.

Sutte 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP3417-8

SDG:

WP3417

Report Date: PO No. :

8/26/99 N7912-P99264

Project:

CTO #68

% Solids:

N/A

Method:

EPA 8270

Date Analyzed: 8/10/99

Sample Description	Matrix Sa	mpled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
29GLM0701	AQ	7/27/99	7/28/99	7/29/99	DPD	EPA 3510	KRT
Compound	Result	Units	DF	Sample PQL	Method PQL		
NAPHTHALENE	<10	ug/L	1.0	10	10		
2-METHYLNAPHTHALENE	<10	ug/L	1.0	10	10		
ACENAPHTHYLENE	<10	ug/L	1.0	10	10		
ACENAPHTHENE	<10	ug/L	1.0	10	10		
FLUORENE	<10	ug/L	1.0	10	10		
PHENANTHRENE	<10	ug/L	1.0	10	10		
ANTHRACENE	<10	ug/L	1.0	10	10		
FLUORANTHENE	<10	ug/L	1.0	10	10		
PYRENE	<10	ug/L	1.0	10	10		
BENZO[A]ANTHRACENE	<10	ug/L	1.0	10	10		
CHRYSENE	<10	ug/L	1.0	10	10		
BENZO[B]FLUORANTHENE	<10	ug/L	1.0	10	10		
BENZO[K]FLUORANTHENE	<10	ug/L	1.0	10	10		
BENZO[A]PYRENE	<10	ug/L	1.0	10	10		
INDENO[1,2,3-CD]PYRENE	<10	ug/L	1.0	10	10		
DIBENZ[A,H]ANTHRACENE	<10	ug/L	1.0	10	10		
BENZO[G,H,I]PERYLENE	<10	ug/L	1.0	10	10		
NITROBENZENE-D5	50	· %	1.0				
2-FLUOROBIPHENYL	52	%	1.0				
TERPHENYL-D14	50	%	1.0				

Report Notes:

0-13

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP3417-8RA

SDG:

WP3417

Report Date:

8/26/99

PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

N/A

Method:

EPA 8270

Date Analyzed: 8/11/99

Sample Description	Matrix	Matrix Sampled Date		Ext. Date	Ext'd By	Ext. Method	Analyst
29GLM0701	AQ	7/27/99	7/28/99	7/29/99	DPD	EPA 3510	KRT
Compound	Res	ult Units	DF	Sample PQL	Method PQL		
NAPHTHALENE	<1	0 ug/L	1,0	10	10		
2-METHYLNAPHTHALENE	<1	0 ug/L	1.0	10	10		
ACENAPHTHYLENE	<1	0 ug/L	1.0	10	10		
ACENAPHTHENE	<1	0 ug/L	1.0	10	10		
FLUORENE	<1	0 ug/L	1.0	10	10		
PHENANTHRENE	<1	0 ug/L	1.0	10	10		
ANTHRACENE	<1	0 ug/L	1.0	10	10	1	
FLUORANTHENE	<1	0 ug/L	1.0	10	10		
PYRENE	<1	0 ug/L	1.0	10	10		
NZO[A]ANTHRACENE	<1	0 ug/L	1.0	10	10		
RYSENE	<1	0 ug/L	1.0	10	10		
BENZO[B]FLUORANTHENE	<1	0 ug/L	1.0	10	10		
BENZO[K]FLUORANTHENE	<1	0 ug/L	1.0	10	10		
BENZO[A]PYRENE	<1	0 ug/L	1.0	10	10		
INDENO[1,2,3-CD]PYRENE	<1	0 ug/L	1.0	10	10		
DIBENZ[A,H]ANTHRACENE	<1	0 ug/L	1.0	10	10		
BENZO[G,H,I]PERYLENE	<1	0 ug/L	1.0	10	10		
NITROBENZENE-D5	57	7 %	1.0				
2-FLUOROBIPHENYL	57	7 %	1.0				
TERPHENYL-D14	53	3 %	1.0				

port Notes:

0-13

Method Blank and Laboratory Control Sample Results

Client: Tetra Tech NUS
Work Order: WP3417

METHOD BLANK RESULTS

LABORATORY CONTROL SAMPLE RESULTS

	Date	Date		Cor	ncentration	1	Practical		True	Measured	Percent	Acceptance	Acceptance
	of	of	Units	N	Aeasured	Acceptance	Quantitation	Units	Value	Value	Recovered	Range	Range
Parameter	Prep	Analysis		i	n Blank	Range	Level**					(%)	(mg/kg)
Nitrate-Nitrogen	28-Jul-99	28-Jul-99	mg/L	<	0.050 <	< 0.050	0.050	mg/L	2.5	2.47	98.8	80-120	
Sulfate	14-Aug-99	14-Aug-99	mg/L	<	1.0	< 1.0	1.0	mg/L	10	10.2	102.0	80-120	

^{**} Practical quantitation level is the lowest concentration measurable for samples with normal chemical and physical composition during routine laboratory operations.

DATA QUALITY COMMENTS:

Results of all quality control measurements are within the laboratory and method specified acceptance range except as noted.

4B SEMIVOLATILE ORGANICS METHOD BLANK SUMMARY

EPA SAMPLE NO.

Lab Name: Katahdin Analytical Services

SDG No.: WP3417

SBLK;072999

Lab File ID:

Z1692

Lab Sample ID: SBLK;072999

Instrument ID:

5972-Z

Date Extracted: 7/29/99

GC Column: RTX-624 ID: 0.18

(mm)

Date Analyzed: 08/10/99

Matrix: (soil/water) WATER

Time Analyzed: 12:49

Level: (low/med)

LOW

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, LCS'S, MS AND MSD'S

Client Sample ID	Lab Sample ID	Lab Data File	Date Injected	Time Injected
LCS;072999	LCS;072999	Z1693	8/10/99	1:34:00 PM
31GLM0201	WP3417-1	Z1694	8/10/99	2:20:00 PM
31GLM0101D	WP3417-3	Z1696	8/10/99	3:51:00 PM
30GLM1201	WP3417-4	Z1697	8/10/99	4:37:00 PM
31GLM0101	WP3417-7	Z1698	8/10/99	5:23:00 PM
29GLM0701	WP3417-8	Z1699	8/10/99	6:09;00 PM
29GLM0701MSD ,	WP3417-8MSD	Z1701	8/10/99	7:41:00 PM
29GLM0301	WP3417-2	Z1707	8/11/99	12:28:00 PM
31GLM0101D	WP3417-3RA	Z1708	8/11/99	1:14:00 PM
29GLM0701	WP3417-8RA	Z1709	8/11/99	2:00:00 PM
29GLM0701MS	WP3417-8MS	Z1710	8/11/99	2:45:00 PM

Paul Calligan Client:

> Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

SBLK;072999

SDG:

WP3417

Report Date:

8/26/99

PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

N/A

Method:

EPA 8270

Date Analyzed: 8/10/99

Sample Description	Matrix San	npled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
SBLK;072999	AQ	-	-	7/29/99	DPD	EPA 3510	KRT
Compound	Result	Units	DF	Sample PQL	Method PQL		
NAPHTHALENE	<10	ug/L	1.0	10	10		
2-METHYLNAPHTHALENE	<10	ug/L	1.0	10	10		
ACENAPHTHYLENE	<10	ug/L	1.0	10	10		
ACENAPHTHENE	<10	ug/L	1.0	10	10		
FLUORENE	<10	ug/L	1.0	10	10		
PHENANTHRENE	<10	ug/L	1.0	10	10		
ANTHRACENE	<10	ug/L	1.0	10	10		
FLUORANTHENE	<10	ug/L	1.0	10	10		
PYRENE	<10	ug/L	1.0	10	10		
BENZOJAJANTHRACENE	<10	ug/L	1.0	10	10 ୍		
CHRYSENE	<10	ug/L	1.0	10	10		
BENZO[B]FLUORANTHENE	<10	ug/L	1.0	10	10		
BENZO[K]FLUORANTHENE	<10	ug/L	1.0	10	10		
BENZO[A]PYRENE	<10	ug/L	1.0	10	10		
INDENO[1,2,3-CD]PYRENE	<10	ug/L	1.0	10	10		
DIBENZ[A,H]ANTHRACENE	<10	ug/L	1.0	10	10		
BENZO[G,H,I]PERYLENE	<10	ug/L	1.0	10	10		
NITROBENZENE-D5	60	%	1.0				
2-FLUOROBIPHENYL	61	%	1.0				
TERPHENYL-D14	96	%	1.0				

Report Notes:

Katahdin Analytical Services 8270 LCS Recovery Sheet

Lab File: Z1693

Sample ID: LCS;072999

Date Run: 8/10/99

Analyst: KRT

Time Injected 1:34:00 PM

Matrix: AQ

Compound Name	Spike Amt (ug/L)	Result (ug/L)	Rec (%)	Limits (%)
2-METHYLNAPHTHALENE	50	34.8	*70	70-130
ACENAPHTHENE	50	36.8	74	70-130
ACENAPHTHYLENE	50	37.2	74	70-130
ANTHRACENE	50	45,3	90	70-130
BENZO[A]ANTHRACENE	50	42.2	84	70-130
BENZO[A]PYRENE	50	35,9	72	70-130
BENZO[B]FLUORANTHENE	50	34.4	*69	70-130
BENZO[G,H,I]PERYLENE	50	35.7	71	70-130
BENZO[K]FLUORANTHENE	50	40.4	81	70-130
CHRYSENE	50	43.4	87	70-130
DIBENZ[A,H]ANTHRACENE	50	32.8	*66	70-130
FLUORANTHENE	50	41.7	83	70-130
FLUORENE	50	37.0	74	70-130
INDENO[1,2,3-CD]PYRENE	50	35.0	70	70-130
NAPHTHALENE	50	34.6	*69	70-130
PHENANTHRENE	50	42.4	85	70-130
PYRENE	50	48.6	97	70-130

Katahdin Analytical Services MS/MSD Report

Sample	File Name	Date Acquired	Time inj	Analyst	Matrix	Method
WP3417-8	Z1699	8/10/99	6:09:00 PM	KRT	AQ	8270_99
WP3417-8MS	Z1710	8/11/99	2:45:00 PM	KRT	AQ	8270_99
WP3417-8MSD	Z1701	8/10/99	7:41:00 PM	KRT	AQ	8270_99

Compound Name	Native (ug/L)	MS Spk Amount (ug/L)	MSD Spk Amount (ug/L)	MS Result (ug/L)	MSD Result (ug/L)	MS REC (%)	MSD REC (%)	Recovery Limits (%)	RPD (%)	RPD Limit (%)
CHRYSENE	0	49	48	24.0	39.7	*49	83	60-140	*49	30
ACENAPHTHENE	0	49	48	29.3	35.3	60	73	60-140	18	30
ACENAPHTHYLENE	0	49	48	30.2	35.2	62	73	60-140	15	30
ANTHRACENE	0	49	48	30.9	42.0	63	88	60-140	30	30
BENZO[A]ANTHRACENE	0	49	48	22.8	38.0	*46	79	60-140	*50	30
BENZO[A]PYRENE	0	49	48	18.2	32.0	*37	67	60-140	*55	30
BENZO[B]FLUORANTHENE	0	49	48	16.6	29.5	*34	62	60-140	*56	30
2-METHYLNAPHTHALENE	0	49	48	28.2	33.2	*58	69	60-140	16	30
BENZO[K]FLUORANTHENE	0	49	48	23.0	38.8	*47	81	60-140	*51	30
PYRENE	0	49	48	30.4	45.0	62	94	60-140	•39	30
DIBENZ[A,H]ANTHRACENE	0	49	48	16.7	28.8	*34	60	60-140	•53	30
FLUORANTHENE	0	49	48	24.6	37.8	*50	79	60-140	*42	30
FLUORENE	0	49	48	27.8	34.1	*57	71	60-140	20	30
INDENO[1,2,3-CD]PYRENE	0	49	48	16.3	29.9	*33	62	60-140	•59	30
NAPHTHALENE	0	49	48	29.5	32.6	60	68	60-140	10	30
PHENANTHRENE	0	49	48	29.4	38.8	60	81	60-140	28	30
BENZO[G,H,I]PERYLENE	0	49	48	17.6	31.8	*36	66	60-140	*57	30

VOLATILE ORGANICS METHOD BLANK SUMMARY

(mm)

EPA SAMPLE NO.

VBLKQ31A

Lab Name: Katahdin Analytical Services

SDG No.: WP3417

Lab File ID:

Q6100

Lab Sample ID: VBLKQ31A

Date Analyzed: 07/31/99

Time Analyzed: 11:36

GC Column: RTX-502 ID: 0.53

Heated Purge: (Y/N) N

Instrument ID: 5970-Q

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, LCS'S, MS AND MSD'S

Client Sample ID	Lab Sample ID	Lab Data File	Date Injected	Time Injected
LCSQ31A	LCSQ31A	Q6099	7/31/99	10:44:00 AM
31GLM0201	WP3417-1	Q6113	7/31/99	8:23:00 PM
29GLM0301	WP3417-2	Q6114	7/31/99	9:02:00 PM

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

VBLKQ31A

SDG:

WP3417 8/26/99

Report Date: PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

N/A

Method:

SW8260

Date Analyzed: 7/31/99

Sample Description	Matrix	Samp	oled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
VBLKQ31A	AQ		•	<u>-</u>	7/31/99	HMP	5030	НМР
Compound	Re	sult	Units	DF	Sample PQL	Method PQL		
BENZENE		<5	ug/L	1.0	5	5		
TOLUENE		<5	ug/L	1.0	5	5		
1,2-DIBROMOETHANE		<5	ug/L	1.0	5	5		
ETHYLBENZENE		<5	ug/L	1.0	5	5		
NAPHTHALENE		<5	ug/L	1.0	5	5		
MTBE		<5	ug/L	1.0	5	5		
TOTAL XYLENES	*	<5	ug/L	1.0	5	5		
DIBROMOFLUOROMETHANE		95	%	1.0				
1,2-DICHLOROETHANE-D4		93	%	1.0				
TOLUENE-D8		96	%	1.0				
P-BROMOFLUOROBENZENE		95	%	1.0				

Report Notes:

Katahdin Analytical Services 8260 LCS Recovery Sheet

Lab File: Q6099

Sample ID: LCSQ31A

Date Run: 7/31/99

Analyst: HMP

Time Injected 10:44:00 AM

Matrix: AQ

Compound Name	Spike Amt (ug/L)	Result (ug/L)	Rec (%)	Limits (%)
1,2-DIBROMOETHANE	50	48.2	96	60-140
BENZENE	50	47.9	96	60-140
ETHYLBENZENE	50	50.1	100	60-140
MTBE	50	50.8	102	60-140
NAPHTHALENE	50	45.5	91	60-140
TOLUENE	50	49.3	98	60-140
TOTAL XYLENES	150	137	91	60-140

VOLATILE ORGANICS METHOD BLANK SUMMARY

EPA SAMPLE NO.

VBLKS02B

Lab Name: Katahdin Analytical Services SDG No.: WP3417

Lab File ID:

S5790

Lab Sample ID: VBLKS02B

Date Analyzed: 08/02/99

Time Analyzed: 23:51

GC Column: RTX-624 ID: 0.18

(mm)

Heated Purge: (Y/N) N

Instrument ID: 5972-S

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, LCS'S, MS AND MSD'S

Client Sample ID	Lab Sample ID	Lab Data File	Date Injected	Time Injected
LCSS02B	LCSS02B	S5788	8/2/99	10:36:00 PM
12GLM0401	WP3417-5	S5791	8/3/99	12:29:00 AM
29TL00901	WP3417-6	S5792	8/3/99	1:06:00 AM

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

VBLKS02B

SDG:

WP3417

Report Date:

8/26/99

PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

N/A

Method:

Date Analyzed:

SW8260 8/2/99

Sample Description	Matrix	Sampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
VBLKS02B	AQ	-	•	8/2/99	КМС	5030	КМС
Compound	Resu	ilt Units	DF	Sample PQL	Method PQL		
BENZENE	<5	ug/L	1.0	5	5		
TOLUENE	<5	ug/L	1.0	5	5		
1,2-DIBROMOETHANE	<5	ug/L	1.0	5	5		
ETHYLBENZENE	<5	ug/L	1.0	5	5		
NAPHTHALENE	<5	ug/L	1.0	5	5		
MTBE	<5	ug/L	1.0	5	5		
TOTAL XYLENES	<5	ug/L	1.0	5	5		
DIBROMOFLUOROMETHANE	111	-	1.0				
1,2-DICHLOROETHANE-D4	112	2 %	1.0				
TLUENE-D8	111	%	1.0				
JROMOFLUOROBENZENE	92	%	1.0				

port Notes:

Katahdin Analytical Services 8260 LCS Recovery Sheet

Lab File: S5788

Sample ID: LCSS02B

Date Run: 8/2/99

Analyst: KMC

Time Injected 10:36:00 PM

Matrix: AQ

Compound Name	Spike Amt (ug/L)	Result (ug/L)	Rec (%)	Limits (%)
1,2-DIBROMOETHANE	50	49,9	100	60-140
BENZENE	50	53.1	106	60-140
ETHYLBENZENE	50	64.8	130	60-140
MTBE	50	53.2	106	60-140
NAPHTHALENE	50	61.4	123	60-140
TOLUENE	50	56.1	112	60-140
TOTAL XYLENES	150	196	131	60-140

ENSR Air Toxics Specialty Laboratory 42 Nagog Park Acton, MA 01720

DATE:

August 26, 1999

TO:

Andrea Colby

Katahdin Analytical 340 County Road No. 5

P.O. Box 720

Westbrook, ME 04098

Re:

Organic Analyses of Aqueous Samples by Gas Chromatography Flame

Ionization Detection (GC/FID)

PROJECT #: 8601-008-200

LAB ID #:

990123

ANALYTICAL PROCEDURE:

Three (3) aqueous samples were analyzed under the guidelines of EPA SW846 Method 3810.

A Hewlett Packard 5890 series II gas chromatograph (GC) equipped with a Hewlett Packard flame ionization detector (FID) was used for the analysis. A 1.0 mL headspace aliquot of each sample was injected into the column for analysis. The operating conditions of the GC/FID are listed in Table 1. A five point calibration was performed for the target analytes (methane, ethane, and ethylene).

No problems occurred during sample receipt or log-in.

QUALITY CONTROL:

- 1. A laboratory blank was analyzed daily in the same manner as the samples. Target analytes were not detected in the blank.
- 2. A Matrix Spike/MSD was performed on the following sample: WP3417-7

All recoveries were within QC limits.

Date Samples Received by the Laboratory: 7/28/99

Date Analysis Started: 8/4/99

C:\My Documents\katrpt10.doc

SAMPLE LOG-IN & RECEIPT CHECKLIST

Client/Proj#: Katahali	NP341	7 / 860	1-008-200)		
Proj Mgr: M. Hout			Lab Pool #:	990 123		
nspected & Logged in by:	MacDuff	· -	Date Time: 7	1012		
Sample Matrix	Number of Samples	Analysis Requested	Analyze by (date)	Storage Location		
Aqueous	3	mee.	8/25/99	RI		
<u> </u>			i j	· <u>:</u>		
<u></u>						
·-			: :	· -		
<u>.</u> . 	· .		:	:		
			· :			
Hand delivered COC present / not present COC Tape present / not present Samples broken / intact of Samples ambient / chilled Samples preserved correct Received within outside is COC tapes present / not present	resent on shipping n receipt on receipt the first ty / incorrectly / no holding time	p blunk = ne recommend				
9) Discrepancies / NO discrepancies noted between COCs and samples						
Additional Comments: 3 (orts per . diea. Pollous	sample				
		<u> </u>	·			

Katahdin Katahdin Katahdin Katahdin

CHAIN of CUSTODY

	ANALYTICAL SURVICE		07) 874-2400 (07) 775-4029					د. مسمد ا	PLEASI	E PRIN	T IN PE	N_	Pag	je	of
Cli	lent KATAHDIK	Am	alymode S	ENCES	Contac	ot DREP	o Cour		hone #			Fax ((#		
Ad	KATAHDIK Idress FAMET	Ds Di	BOVE	City				j s	tate			Zip Code)		
Pu	ırchase Order #			roj. Name / N							Katahdi	n Quote #	‡		
Bil	 (if different than above)				Ac	dress									
Sa	ampler (Print / Sign)							-		Copi	es To:			_	
L	AB USE ONLI	ORK ORDER		· - *						PRESER	CONTAIN EVATIVES	5			
RE	KA EMARKS: <u>Su<i>B</i>. </u>		OJECT MANAGER _			Filt. CIYON	Filt. N□Y□N	Filt. □Y□N	Filt. □Y□N	Filt.	Filt.	Filt. DYDN	Filt. DYDN	Fitt. OYON	Filt.
	HIPPING INFO: 💆 F	ED EX	☐ UPS	CLIEN	NT	ETHENE					:		:	:	:
	RBILL NO:					THANE					:		:		
TE		EMP BLANK	Date / Time	☐ NOT		そし			28					:	:
. *	Sample Descrip		coll'd	Matrix	No. of Cntrs.	ME			$p(\mathbf{J})$. :		
	WP3417	7-1	1/27/99/1050	AR	3	X		900	133						
		-2	11010	 	ļ., ļ	X	_		-	2	_				
_		-7	/ /1055			X				3			 		
			' /	<u> </u>		- :	_								:-
			/												
_			/											-	
			/				_				_				
			/												
			/			1	_					<u> </u>		·	
			/								_				
_			/								<u> </u>				
_			/				1				ļ			_	
	_		/				1								
			/				<u> </u>								
			/	<u> </u>		1				<u></u>		-			
<u></u>	LA CENTRO		/												
10;	MMENTS QC-1	V N	FESC ~	DD(K.	AS 01	0700	C - DB	3)	Resu	its	Due	: {	3-Z	5 -c	19_
1		7-28-9	9 1445	ceived By: (S		_	Relinquisl		_	_	ate / Ti		Received	WIV	(1 (1)
R	Relinquished By: (Signatu	re) Da	te / Time Re	ceived By: (S	ignature	*)	Relinquisl	ned By: (Signature	e) D	ate / Ti		Received		

		EPA SAM	PLE NO.
Lab Name: E	NSR Contract: _	WP3417-2	?(H)
Lab Code:	Case No.:	SAS NO.: SDG NO.	:
Matrix: (soil/water)	water	Lab Sample ID: 990123-2	
Sample wt / vol:	32.5 ml (g/ml)	Lab File ID: KTH_029	
Level: (low/med)	low	Date Received:7/29/99	
% Moisture:1	NA	Date Analyzed:8/4/99	
GC Column: _ Carb	oxen 1004 OD: 1/16"	Dilution Factor:11	
Soil Extract Volume:	ΝΑ (μΙ)	Soil Aliquot Volume: NA	(µl)
CAS NO.	COMPOUND	CONCENTRATION UNITS: (µg/L or PPMv) µg/L	Q
74-82-8	Methane	5.2	U
74-85-1	Ethene	9.0	υ
74-84-0	Ethane	9.6	U

4 METHOD BLANK SUMMARY

 EPA SAMPLE NO.

 Lab Name:
 ENSR
 Contract:
 VBLK01

 Lab Code:
 Case No.:
 SAS NO.:
 SDG NO.:

 Lab File ID:
 KTH_026
 Lab Sample I MB990123

 Instrument ID:
 HPGC#3
 Date Analyzed:
 8/4/99

 Matrix:
 (soil/water)
 water
 Level:
 (low/med)
 low

 THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES; MS AND MSD

 EPA
 LAB
 LAB
 DATE

 SAMPLE NO.
 SAMPLE ID
 FILE ID
 ANALYZED

	EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED
01	LCS01	LCS990123	KTH 027	08/04/99
02	WP3417-1(H)	990123-1	KTH 028	08/04/99
03	WP3417-2(H)	990123-2	KTH_029	08/04/99
04	WP3417-7(C)	990123-3	KTH_030	08/04/99
05	WP3417-7(A) MS	990123-3 MS	KTH_031	08/04/99
06	WP3417-7(B) MSD	990123-3 MSD	KTH_032	08/04/99
07				
08				
09				
10				
11				
12				
13	1			
14				
15	······································			
16				
17				
18				
19				
20				
21				
22 23				
24				
25				
26				
20		<u></u>		

COMMENTS:

EPA SAMPLE NO.

Lab Name: ENS	R Contract:	VBLK01				
Lab Code:	Case No.:	SAS NO.: SDG NO.:	····			
Matrix: (soil/water)	water	Lab Sample ID: MB990123				
Sample wt / vol: 3	2.5 ml (g/ml)	Lab File ID:KTH_026				
Level: (low/med)	low	Date Received:NA				
% Moisture: NA		Date Analyzed:8/4/99				
GC Column: _ Carboxe	n 1004 OD: 1/16"	Dilution Factor:1				
Soil Extract Volume:	NA (μI)	Soil Aliquot Volume: NA	_ (µl)			
CAS NO.	COMPOUND	CONCENTRATION UNITS: (µg/L or PPMv) µg/L	Q			
74-82-8	Methane	5.2	U			
74-85-1	Ethene	9.0	U			
74-84-0	Ethane	9.6	U			

			EPA SAMPLE NO.
Lab Name: EN	ISR Contract:	LCS	01
Lab Code:	Case No.:	SAS NO.:S	SDG NO.:
Matrix: (soil/water) _	water	Lab Sample ID: LCS99	90123
Sample wt / vol:	_32.5 ml (g/ml)	Lab File ID:KTH_0	27
Level: (low/med)	low	Date Received:NA	
% Moisture:N	A	Date Analyzed:8/4/9	9
GC Column: _ Carbo	xen 1004 OD: 1/16"	_ Dilution Factor:1	
Soil Extract Volume:	NA (µl)	Soil Aliquot Volume:	NA (µI)
CAS NO.	COMPOUND	CONCENTRATION UN (µg/L or PPMv) µg/	· · · · ·
74-82-8	Methane	38	
74-85-1	Ethene	66	
74 - 84-0	Ethane	70	

EPA SAMPLE NO. Lab Name: ____ ENSR ____ Contract: ____ WP3417-7(A)MS Matrix: (soil/water) _____ water ____ Lab Sample ID: 990123-3 MS Sample wt / vol: _____ 32.5 ml _____ (g/ml) Lab File ID: ___KTH_031____ Level: (low/med) _____ low _____ Date Received:___7/29/99 _____ % Moisture: _____ NA _____ Date Analyzed: 8/4/99 GC Column: _ Carboxen 1004 __ OD: ___ 1/16" ___ Dilution Factor:____ 1____ Soil Extract Volume: ____ NA ___ (µI) Soil Aliquot Volume: ____ NA ____ (µI) **CONCENTRATION UNITS:** (µg/L or PPMv) __ µg/L __ CAS NO. COMPOUND Q 74-82-8 Methane 370 620 74-85-1 Ethene

690

74-84-0

Ethane

		EPA SAMPLE NO.
Lab Name:	ENSR Contrac	t: WP3417-7(B) MSD
Lab Code:	Case No.:	SAS NO.: SDG NO.:
Matrix: (soil/water)	water	Lab Sample ID: 990123-3 MSD
Sample wt / vol:	32.5 ml (g/ml)	Lab File ID:KTH_032
Level: (low/med) _	low	Date Received:7/29/99
% Moisture:	NA	Date Analyzed:8/4/99
GC Column: _ Carl	boxen 1004 OD: 1/16"	1111
Soil Extract Volume	e: NA (µl)	Soil Aliquot Volume: NA (µI)
CAS NO.	COMPOUND	CONCENTRATION UNITS: (µg/L or PPMv) µg/L Q
74-82-8	Methane	280
74-85-1	Ethene	480
74-84-0	Ethane	530

3 LABORATORY CONTROL SPIKE RECOVERY

Lab Name: ENSR _		Contract:	
Lab Code:	Case NO.:	SAS NO.:	SDG NO.:
Laboratory Control Sample	e No: LCS01		

COMPOUND	SPIKE	LCS	LCS	QC
	ADDED	CONCENTRATION	%	LIMITS
	(µg/L)	(µg/L)	REC #	REC.
Methane	41.03	38.28	93%	50 - 150
Ethene	71.04	65.55	92%	50 - 150
Ethane	77.69	70.18	90%	50 - 150

^{* -} Values outside of QC limits.

MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY

ode:	Case N	IO.: S	SAS NO.:	_		SDG NO.:		
s Spike - EPA Sampl	e NO.:WP3	417-7						
	SPIKE	SAMPLE		MS		MS	}	QC
	ADDED	CONCENTRATION	CONC	ENT	RATION	%		LIMIT
COMPOUND	(µg/L)	(µg/L)		(µg/	L)	REC	#	REC
Methane	410.3	0	37	71.8		91%	Ī	50-15
Ethene	710.4	0	624.4		88%		50-15	
Ethane	777.0	0	689.1		89%		50-18	
						'		
	ODUZE							
	SPIKE	MSD	MSD		۰,			
0011001110	ADDED	CONCENTRATION	%		%	QC LIMITS		
COMPOUND	(μg/L)	(µg/L)	REC		RPD #	RPD	_	REC
Methane	410.3	283.9	69%		27%	50	1	50-15
Ethene	710.4	484.5	68%		25%	50		50-15
· Ethane	777.0	530.4	68% 26%		50		50-18	

August 31, 1999

Mr. Paul Calligan

Tetra Tech Nus

1401 Oven Park Dr., Suite 102

Tallahassee, FL 32308

RE: Katahdin Lab Number:

WP3429

Project ID:

CNC Charleston

Project Manager:

Ms. Andrea J.Colby

Sample Receipt Date(s):

7/29/99

Dear Mr. Calligan:

Please find enclosed the following information:

- * Report of Analysis
- Quality Control Data Summary
- Chain of Custody
- Confirmation

Should you have any questions or comments concerning this Report of Analysis, please do not hesitate to contact the project manager listed above. This cover letter is an integral part of the ROA.

We appreciate your continued use of our laboratory and look forward to working with you in the future. The following signature indicates technical review and acceptance of the data.

Sincerely,

KATAHDIN ANALYTICAL SERVICES

Mary S. Morriel
Authorized Signature

8.31.99

SDG NARRATIVE KATAHDIN ANALYTICAL SERVICES TETRA TECH NUS CASE CNC CHARLESTON

Sample Receipt

The following samples were received on July 29, 1999 and were logged in under Katahdin Analytical Services work order number WP3429 for a hardcopy due date of August 28, 1999.

NUS
ple Identification
GLM0101
GLM0701
L01001
GLM0301
GLM0401
SLM0501
֡

The samples were logged in for the analyses specified on the chain of custody form. All problems encountered and resolved during sample receipt have been documented on the applicable chain of custody forms.

Sample analyses have been performed by the methods as noted herein.

Volatile Organic Analysis

Six aqueous samples were received by the Katahdin Analytical Services, Inc. GC/MS laboratory on July 29, 1999 and were specified to be analyzed by USEPA method 8260B for the analytes benzene, toluene, ethylbenzene, xylenes, MTBE, naphthalene, and EDB.

Analyses for this work order were performed on the 5972-M instrument. A VSTD050 (50 ppb standard) was used for the continuing calibration standard. Internal standard and surrogate compounds were also spiked at 50 ug/l.

Batch QC (VBLK, and LCS) was performed in each twelve-hour window. Results are included in this data package. The LCS QC samples were spiked with the entire list of compounds quantitated for at 50 ppb. A matrix spike/matrix spike duplicate was performed on sample WP3429-5.

Method 8000B, section 7.5.1.2.1 (Revision 2, 12/96) states, "in those instances where the RSD for one or more analytes exceeds 20%, the initial calibration curve may still be acceptable if the mean of the RSD values for all analytes in the calibration is less than or equal to 20%." Method 8260B narrows this 20% maximum to 15%.

In the calibration curves analyzed in this SDG, the average %RSD for all analytes was 11.3%,

making the curve acceptable.

Several manual integrations were performed due to split peaks; all have been flagged with a "M" (software-generated) on the pertinent quantitation reports. All "M" flags have been dated and initialed by the analyst performing the integration. In addition, all "M" flags have been reviewed and approved by the GC/MS supervisor. Copies of each manual integration are included in the pertinent quantitation reports.

No other protocol deviations were noted by the volatile organics staff.

Semivolatile Organic Analysis

Three aqueous samples were received by Katahdin Analytical Services laboratory on July 29, 1999 for analysis in accordance with 8270C for a client specified PAH list of analytes.

Extraction of the samples occurred following USEPA method 3510 on July 30, 1999. A laboratory control spike, consisting of all PAH analytes spiked into organic free water, was extracted in the batch, along with a site specific MS/MSD pair on sample WP3429-5.

The initial calibration curve analyzed in this SDG had some of the target analyte %RSD values exceeding 15 %.

Method 8000B, section 7.5.1.2.1 (Revision 2, 12/96) states, "in those instances where the RSD for one or more analytes exceeds 20%, the initial calibration curve may still be acceptable if the mean of the RSD values for all analytes in the calibration is less than or equal to 20%." Section 7.3.7.1 of method 8270C (revision 3, 12/96) narrows this 20% maximum to 15%.

In the calibration curve analyzed in this SDG, the average %RSD for all analytes was 10.1%, making the curve acceptable.

Several manual integrations were performed due to split peaks; all have been flagged with a "M" by the data system. All manual integrations have been dated and initialed by the responsible analyst. Copies of each manual integration are included in the data package. All manual integrations have been reviewed and approved by the GC/MS supervisor.

No other protocol deviations were noted by the semivolatiles organics staff.

Wet Chemistry Analysis

For work order WP3429 analyses for Nitrate (E300) and Sulfate (E300) were performed according to the U.S. EPA "Methods for the Determination of Inorganic Substances in Environmental Samples", EPA 600/R-93/100, August 1993. All samples were run within laboratory hold time. The wet chemistry staff noted no protocol deviations.

KATAHDIN ANALYTICAL SERVICES				LAB (WORK ORDER) # 121 3429
SAMPLE RECEIPT CONDITION REP Tel. (207) 874-2400 Fax (207) 775-4029	OKI			PAGE: OF
				COOLER:OF
CLIENT: Tetra Tech		_		COC# SDG# DATE / TIME RECEIVED:
PROJECT: CNC	<u>.</u>	_		DELIVERED BY: RECEIVED BY: LIMS ENTRY BY: LIMS REVIEW BY / PM: AC
	YES	NO	EXCEPTIONS	COMMENTS RESOLUTION
1. CUSTODY SEALS PRESENT / INTACT?				
2. CHAIN OF CUSTODY PRESENT IN THIS COOLER?	I			·
3. CHAIN OF CUSTODY SIGNED BY CLIENT?	Ø			
4. CHAIN OF CUSTODY MATCHES SAMPLES?				
5. TEMPERATURE BLANKS PRESENT?				TEMP BLANK TEMP (°C)= 1.0 By Gry 7/29/99
6. SAMPLES RECEIVED AT 4°C +/- 2? (CETICE PACKS PRESENT Y or N?		¥		COOLER TEMP (*C)= <u>NA</u> (RECORD COOLER TEMP ONLY IF TEMP BLANK IS NOT PRESENT)
7. VOLATILES FREE OF HEADSPACE?				
8. TRIP BLANK PRESENT IN THIS COOLER	Ø			
9. PROPER SAMPLE CONTAINERS AND VOLUME?	\mathbf{Z}			
10. SAMPLES WITHIN HOLD TIME UPON RECEIPT?				
11. SAMPLES PROPERLY PRESERVED ⁽¹⁾ ?				<u> </u>
12. CORRECTIVE ACTION REPORT FILED?		u	N/A	
13. ANALYTICAL PROGRAMS (CIRCLE ONE) COMM	IERCIAL	CLP HA	ZWRAP (NFESC)	COE AFCEE OTHER (STATE OF ORIGIN):
LOG - IN NOTES ⁽¹⁾ :				
			•	
		`	``\	

0000024

Katahdin Katahdin 340 County Road No. 5 P.O. Box 720 Westbrook, ME 04098

CHAIN of CUSTODY

ANALYTICAL SURVICES Tel: (207) 874-2400 Fax: (207) 775-4029		PLEASE PR	INT IN PEN	Page	of
Tetratech NUS Inc -	Contact Pacal Couldina	Phone #	7-4125 ())	į
Add WH. 21 Aue H City N	1	N State S.C		°39 4053.	10
Purchase Order # Proj. Name / N	01:00 10	<u>, , , , , , , , , , , , , , , , , , , </u>	Katahdin Quote		11/2
Bill (if different than above)	Address				
Sampler (Print / Sign) Jamas R. Hill Air	m. R. He	<i>[]</i> c	opies To:		
LAB USE ONLY WORK ORDER #: WF3429 (/-	y service of the serv		D CONTAINER TYP SERVATIVES	E	
KATAHDIN PROJECT MANAGER	Filt. Filt	Filt. Filt. Filt. Filt. Filt. Filt.	lt. Filt. Filt.	Filt. Filt.	Filt. □Y□N
REMARKS:	<u></u>				. :
SHIPPING INFO:		हैं शें हैं			·
AIRBILL NO:	_ · 112_	1500 Jeco 1600 J			:
TEMP®C	12 M	Det And			
coll'd Matrix	No. of Cntrs.	13223	<u> </u>		<u> </u>
31GLMØ101 13/99/1055 GW	33				
24GLMØ7Ø1 //245 1	33				
29GLMØ7ØIM /1245	33			MS/MSO	P
GLMØ3Ø1 /289/1040	932	3 1			
31GLMØ4Ø1 /1115	5 3 2				
316LM&4\$1M /1115	532			MS/MS	D
31G-LMØ5Ø1 /1200	532				
3/7/10 000 //- //					
3/TLØ1ØØ1 V 6800 V	32		- TripB	lank	_
/					
/					
/					
/					
/					
OMMENTS					
and the same of th					
F ished By: (Signature) Date / Time Received By: (S		ished By: (Signature)		Received By: (Sign	ature)
Relinquished By: (Signature) Date / Time Received By: (S	ignature) Relinqu	uished By: (Signature)	7 29 99 0900 SI Date / Time	Received By: (Sign	ature)

KATAHDIN ANALYTICAL SERVICES, INCORPORATED New England-ME Laboratory (207) 874-2400 CONFIRMATION

Page 1 ORDER NO WP-3429 Project Manager: Andrea J. Colby ORDER DATE: 07/29/99 PHONE: 850/385-989 REPORT TO: Paul Calligan Tetra Tech NUS FAX: 850/385-9860 1401 Oven Park Dr., Suite 102 DUE: 28 AUG Tallahassee, FL 32308 FAC.ID: CNC CHARLESTON PHONE: 412/921-7090 ACCOUNTS PAYABLE INVOICE: TETRA TECH NUS, INC. PO: N7912-P99264 FOSTER PLAZA 7, 661 ANDERSEN DR. PITTSBURGH, PA 15220 PROJECT: CTO #68 DELIVERED BY: FEDEX SAMPLED BY: J.R. HILL DISPOSE: AFTER 27 SEP ITEM LOG NUMBER SAMPLE DESCRIPTION SAMPLED DATE/TIME RECEIVED MATRIX WP3429-1 31GLM0101 27 JUL 1055 29 JUL WP3429-2 29GLM0701 27 JUL 1245 WP3429-3 31TL01001 28 JUL 0800 DETERMINATION METHOD QTY PRICE TUUOMA Volatile Organics by 8260B SW8260 3 75.00 225.00 LOG NUMBER SAMPLE DESCRIPTION SAMPLED DATE/TIME RECEIVED MATRIX WP3429-4 31GLM0301 28 JUL 1040 29 JUL ΑO OTYPRICE DETERMINATION METHOD AMOUNT Volatile Organics by 8260B SW8260 1 75.00 75.00 EPA 8270 1 125.00 Polynuclear Aromatic Hydrocarbons 125.00 GC Subcontract 1 95.00 95.00 Sulfate (as SO4) E300 30.00 1 30.00 Nitrogen, Nitrate (as N) E300 1 0.00 0.00 TOTALS 325.00 325.00 SAMPLED DATE/TIME RECEIVED MATRIX LOG NUMBER SAMPLE DESCRIPTION 3 WP3429-5 31GLM0401 28 JUL 1115 29 JUL AO

WP3429-6 31GLM0501	28 JUI	1200			
DETERMINATION	METHOD	QTY	PRICE	AMOUNT	
Volatile Organics by 8260B	SW8260	2	75.00	150.00	
Polynuclear Aromatic Hydrocarbons	EPA 8270	2	125.00	250.00	
TOTALS		2	200.00	400.00	-

KATAHDIN ANALYTICAL SERVICES, INCORPORATED New England-ME Laboratory (207) 874-2400 CONFIRMATION

Page 2

ORDER NO WP-3429

Project Manager: Andrea J. Colby

ORDER DATE: 07/29/99

`RT TO: Paul Calligan

PHONE: 850/385-9899

Tetra Tech NUS

FAX: 850/385-9860

1401 Oven Park Dr., Suite 102

DUE: 28 AUG

Tallahassee, FL 32308

FAC.ID: CNC CHARLESTON

INVOICE:

ACCOUNTS PAYABLE

PHONE: 412/921-7090

TETRA TECH NUS, INC.

PO: N7912-P99264

FOSTER PLAZA 7, 661 ANDERSEN DR.

PITTSBURGH, PA 15220

PROJECT: CTO #68

SAMPLED BY: J.R. HILL

DELIVERED BY: FEDEX

DISPOSE: AFTER 27 SEP

ORDER NOTE:

QC-IV NFESC

DD (KAS007QC-DB3)

CNC CHARLESTON

REPORT COPY: MS.LEE LECK

TETRA TECH NUS

FOSTER PLAZA 7 661 ANDERSEN DR. PITTSBURG, PA 15220

REPORT & DISK

INFOICE: With Report

TOTAL ORDER AMOUNT

\$950.00

This is NOT an Invoice

AJC/BKR

07-29Please contact KATAHDIN ANALYTICAL SERVICES promptly if you have any questi

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP3429-2

SDG:

WP3429

Report Date:

8/27/99

PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

N/A

Method:

SW8260

Date Analyzed: 8/3/99

Sample Description	Matrix	Samį	pled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
29GLM0701	ΑQ	7,	/27/99	7/29/99	8/3/99	DJP	5030	DJP
Compound	R	esult	Units	DF	Sample PQL	Method PQL		
BENZENE		<5	ug/L	1.0	5	5		
TOLUENE		<5	ug/L	1.0	5	5		
1,2-DIBROMOETHANE		<5	ug/L	1.0	5	5		
ETHYLBENZENE		< 5	ug/L	1.0	5	5		
NAPHTHALENE		<5	ug/L	1.0	5	5		,
MTBE		<5	ug/L	1.0	5	5		
TOTAL XYLENES		<5	ug/L	1.0	5	5		
DIBROMOFLUOROMETHANE		100	%	1.0				
1,2-DICHLOROETHANE-D4		97	%	1.0				
TOLUENE-D8		102	%	1.0				
P-BROMOFLUOROBENZENE		98	%	1.0				

Report Notes:

VOLATILE ORGANICS METHOD BLANK SUMMARY

EPA SAMPLE NO.

VBLKM02A

Lab Name:

Katahdin Analytical Services

SDG No.: WP3429

Lab File ID:

M1328

Lab Sample ID: VBLKM02A

Date Analyzed: 08/03/99

Time Analyzed: 16:01

GC Column: RTX-624 ID: 0.18

(mm)

Heated Purge: (Y/N) N

Instrument ID: 5972-M

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, LCS'S, MS AND MSD'S

Client Sample ID	Lab Sample ID	Lab Data File	Date Injected	Time Injected
LCSM02A	LCSM02A	M1327	8/3/99	3:22:00 PM
31GLM0101	WP3429-1	M1333	8/3/99	7:14:00 PM
29GLM0701	WP3429-2	M1334	8/3/99	7:53:00 PM
31TL01001	WP3429-3	M1335	8/3/99	8:32:00 PM
31 GLM0301	WP3429-4	M1336	8/3/99	9:12:00 PM
31 GLM0401	WP3429-5	M1337	8/3/99	9:52:00 PM
31GLM0501	WP3429-6	M1338	8/3/99	10:30:00 PM
31 GLM0401MS	WP3429-5MS	M1342	8/4/99	1:09:00 AM
31GLM0401MSD	WP3429-5MSD	M1343	8/4/99	1:47:00 AM

Client: Paul Calligan

> Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

VBLKM02A

SDG:

WP3429

Report Date: PO No.:

8/27/99 N7912-P99264

Project:

CTO #68

% Solids:

N/A

Method: Date Analyzed: 8/3/99

SW8260

Sample Description	Matrix	Sampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
VBLKM02A	QA	**	-	8/3/99	DJP	5030	DJP
Compound	Res	sult Units	DF	Sample PQL	Method PQL		
BENZENE	<	5 ug/L	1.0	5	5		
TOLUENE	<	5 ug/L	1.0	5	5		
1,2-DIBROMOETHANE	<	5 ug/L	1.0	5	5		
ETHYLBENZENE	<	5 ug/L	1.0	5	5		
NAPHTHALENE	<	5 ug/L	1.0	5	5		
MTBE	<	5 ug/L	1.0	5	5		
TOTAL XYLENES	<	5 ug/L	1.0	5	5		
DIBROMOFLUOROMETHANE	9	8 %	1.0				
1,2-DICHLOROETHANE-D4	9	4 %	1.0				
TOLUENE-D8	10	01 %	1.0				
P-BROMOFLUOROBENZENE	9	9 %	1.0				

Report Notes:

Katahdin Analytical Services 8260 LCS Recovery Sheet

Lab File: M1327

Sample ID: LCSM02A

Date Run: 8/3/99

Analyst: DJP

Time Injected 3:22:00 PM

Matrix: AQ

Compound Name	Spike Amt (ug/L)	Result (ug/L)	Rec (%)	Limits (%)
1,2-DIBROMOETHANE	50	49.6	99	60-140
BENZENE	50	51.8	104	60-140
ETHYLBENZENE	50	52.0	104	60-140
MTBE	50	48.7	97	60-140
NAPHTHALENE	50	48.8	98	60-140
FOLUENE	50	52.1	104	60-140
TOTAL XYLENES	150	153	102	60-140

Katahdin Analytical Services MS/MSD Report

Sample	File Name	Date Acquired	Time inj	Analyst	Matrix	Method
WP3429-5	M1337	8/3/99	9:52:00 PM	DJP	AQ	8260_99
WP3429-5MS	M1342	8/4/99	1:09:00 AM	DJP	AQ	8260_99
WP3429-5MSD	M1343	8/4/99	1:47:00 AM	DJР	AQ	8260_99

Compound Name	Native (ug/L)	MS Spk Amount (ug/L)	MSD Spk Amount (ug/L)	MS Result (ug/L)	MSD Result (ug/L)	MS REC (%)	MSD REC (%)	Recovery Limits (%)	RPD (%)	RPD Limit (%)
TOTAL XYLENES	0	150	150	130	128	87	86	60-140	1.6	20
TOLUENE	0	50	50	44.6	44.2	89	88	60-140	0.90	20
NAPHTHALENE	0	50	50	35.8	37.3	72	74	60-140	4.1	20
MTBE	0	50	50	42.9	43.0	86	86	60-140	0.23	20
ETHYLBENZENE	0	50	50	44.1	43.0	88	86	60-140	2.5	20
BENZENE	0	50	50	44.3	44.0	88	88	60-140	0.68	20
1,2-DIBROMOETHANE	0	50	50	43,2	44,5	86	89	60-140	3.0	20

August 27, 1999

Mr. Paul Calligan

Tetra Tech Nus

1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

RE: Katahdin Lab Number:

WP3395

Project ID:

CNC Charleston

Project Manager:

Ms. Andrea J.Colby

Sample Receipt Date(s):

7/27/99

Dear Mr. Calligan:

Please find enclosed the following information:

- Report of Analysis
- Quality Control Data Summary
- Chain of Custody
- Confirmation

Should you have any questions or comments concerning this Report of Analysis, please do not hesitate to contact the project manager listed above. This cover letter is an integral part of the ROA.

We appreciate your continued use of our laboratory and look forward to working with you in the future. The following signature indicates technical review and acceptance of the data.

Sincerely,

KATAHDIN ANALYTICAL SERVICES

Haria Crouck
Authorized Signature

SDG NARRATIVE KATAHDIN ANALYTICAL SERVICES TETRA TECH NUS CASE CNC CHARLESTON

Sample Receipt

The following samples were received on July 27, 1999 and were logged in under Katahdin Analytical Services work order number WP3395 for a hardcopy due date of August 26, 1999.

KATAHDIN	TTNUS
Sample No.	Sample Identification
	12TL00801
WP3395-1	
WP3395-2	12GLM0401
WP3395-3	12GLM0401D
WP3395-4	12GLM0501
WP3395-5	12GLM0301
WP3395-6	12GLM0701
WP3395-7	13GLM0201
WP3395-8	13GLM0201D
WP3395-9	13GLM0401
WP3395-10	29GLM0201
WP3395-11	29GLM0401
WP3395-12	29GLM0401D
WP3395-13	29GLM0501
WP3395-14	ZBR00101
WP3395-15	12GLM0101
WP3395-16	12GLM0201
WP3395-17	12GLM0601

The samples were logged in for the analyses specified on the chain of custody form. All problems encountered and resolved during sample receipt have been documented on the applicable chain of custody forms.

Sample analyses have been performed by the methods as noted herein.

Volatile Organics Analysis

Seventeen aqueous samples were received by the Katahdin Analytical Services, Inc. GC/MS laboratory on July 27, 1999 and were specified to be analyzed by USEPA method 8260B for the analytes benzene, toluene, ethylbenzene, xylenes, MTBE, naphthalene, and EDB.

Analyses for this workorder were performed on the 5972-M and 5973-U instruments. A VSTD050 (50 ppb standard) was used for the continuing calibration standard. Internal standard and surrogate compounds were also spiked at 50 ug/l.

Batch QC (VBLK, and LCS) was performed in each twelve-hour window. Results are included in this data package. The LCS QC samples were spiked with the entire list of compounds quantitated for at 50 ppb. No matrix spike/matrix spike duplicate was performed on any of the samples in this workorder.

Method 8000B, section 7.5.1.2.1 (Revision 2, 12/96) states, "in those instances where the RSD for one or more analytes exceeds 20%, the initial calibration curve may still be acceptable if the mean of the RSD values for all analytes in the calibration is less than or equal to 20%." Method 8260B narrows this 20% maximum to 15%.

In the calibration curves analyzed in this SDG, the average %RSD for all analytes was 10.4% and 15.0%, making the curves acceptable.

Several manual integrations were performed due to split peaks; all have been flagged with a "M" (software-generated) on the pertinent quantitation reports. All "M" flags have been dated and initialed by the analyst performing the integration. In addition, all "M" flags have been reviewed and approved by the GC/MS supervisor. Copies of each manual integration are included in the pertinent quantitation reports.

No other protocol deviations were noted by the volatile organics staff.

Semivolatile Organics Extraction and Analysis

Sixteen aqueous samples were received by Katahdin Analytical Services laboratory on July 27, 1999 for analysis in accordance with 8270C for a client specified PAH list of analytes.

Extraction of the samples occurred following USEPA method 3510 on July 28, 1999. A laboratory control spike/laboratory control spike duplicate pair, consisting of all PAH analytes spiked into organic free water, was extracted in the batch.

The initial calibration curve analyzed in this SDG had some of the target analyte %RSD values exceeding 15 %.

Method 8000B, section 7.5.1.2.1 (Revision 2, 12/96) states, "in those instances where the RSD for one or more analytes exceeds 20%, the initial calibration curve may still be acceptable if the mean of the RSD values for all analytes in the calibration is less than or equal to 20%." Section 7.3.7.1 of method 8270C (revision 3, 12/96) narrows this 20% maximum to 15%.

In the calibration curve analyzed in this SDG, the average %RSD for all analytes was 10.1%, making the curve acceptable.

Several manual integrations were performed due to split peaks; all have been flagged with a "M" by the data system. All manual integrations have been dated and initialed by the responsible analyst. Copies of each manual integration are included in the data package. All manual integrations have been reviewed and approved by the GC/MS supervisor.

Wet Chemistry Analysis

Samples for work order WP3395 were analyzed for nitrate and sulfate in accordance with "Methods for Chemical Analysis of Water and Wastes", EPA 600/4-79-020, 1979, Revised 1983. No deviations were noted by the Wet Chemistry group.

KATAHD ANALYTICAL SERVICES, SAMPLE RECEIPT CONDITION REPO				, s	LAB (WORK ORD)	ER) #	WP 3395	
Tel. (207) 874-2400 Fax (207) 775-4029	21,1				PAGE:		OF	
		••			COOLER:	<u> </u>	OF4	
CLIENT: Tetra Tech			••		COC# SDG# DATE / TIME REC	EIVED:	7.27.99 085	
PROJECT: CNC		· ,			DELIVERED BY:_ RECEIVED BY:_ LIMS ENTRY BY:_	· · · · · · · · · · · · · · · · · · ·	Fed Ex Sa So	
	-				LIMS REVIEW BY	′ / PM: <u>∗</u>	A) C	
CUSTODY SEALS PRESENT / INTACT?	YES	NO	EXCEPTIONS		COMMENTS		RESOLUTION	
2.CHAIN OF CUSTODY PRESENT IN THIS COOLER?							·	
B. CHAIN OF CUSTODY SIGNED BY CLIENT?	9							
I. CHAIN OF CUSTODY MATCHES SAMPLES?		*			NO VOAS for 126LAL	b40(==	was decided fract	
5. TEMPERATURE BLANKS PRESENT?	Y				TEMP BLANK TEMP (*C)=	9	had a fined dry -	viols cambe
S. SAMPLES RECEIVED AT 4°C ±1-2?	, 🗖	Image: Control of the control of the			COOLER TEMP (*C)= (RECORD COOLER TEMP ONL	NA.		
7. VOLATILES FREE OF HEADSPACE?	I							· ·
B. TRIP BLANK PRESENT IN THIS COOLER	\mathbf{G}							
PROPER SAMPLE CONTAINERS AND VOLUME?	Ø							
10. SAMPLES WITHIN HOLD TIME UPON RECEIPT?								
11. SAMPLES PROPERLY PRESERVED ⁽¹⁾ ?	⊡′				•		· · · · · · · · · · · · · · · · · · ·	
12. CORRECTIVE ACTION REPORT FILED?			N/A	,				
13. ANALYTICAL PROGRAMS (CIRCLE ONE) COMM	ERCIAL	CLP HA		CACOE	AFCEE OTHER (STATE OF C	ORIGIN):		
LOG-INNOTES(1): no VOAs for	2 12(for ea	:LM04	401 36LM0301	, 136บ	40401, 29GLM0501 a	arrived	broker (extra volum	eavail.)
			Signal 1	•				
		`.	`					

0000055

Use this space (and additional sheets if necessary) to document samples that are received broken or compromised, C-O-C discrepancies, radiation checks, residual chlorine check, results of pH check if required. If samples required pH adjustment, record volume and type of preservative added.

KATAHDIN ANALYTICAL SERVICES			·	LAB (WORK ORDER) # WP 3395
SAMPLE RECEIPT CONDITION REPORTED (207) 874-2400 Fax (207) 775-4029	OŖI			PAGE: 2 OF 4
rax (201) 115-4029		4.		cooler: 2 of 4
CLIENT: Tetra Tech		- .		COC# SDG#
PROJECT: CNC	•	· ,		DELIVERED BY: RECEIVED BY: LIMS ENTRY BY: LIMS REVIEW BY / PM:
1. CUSTODY SEALS PRESENT / INTACT?	YES	NO	EXCEPTIONS	COMMENTS RESOLUTION
2. CHAIN OF CUSTODY PRESENT IN THIS COOLER?	N Ser	<u> </u>		
3. CHAIN OF CUSTODY SIGNED BY CLIENT?	1			
4. CHAIN OF CUSTODY MATCHES SAMPLES?	\square			
5. TEMPERATURE BLANKS PRESENT?		4		TEMP BLANK TEMP (*C)=
6 SAMPLES RECEIVED AT 4°C +/- 27 (CE /)CE PACKS PRESENT YOU N?	, A			COOLER TEMP (°C)= 5.5 NA (RECORD COOLER TEMP ONLY IF TEMP BLANK IS NOT PRESENT)
7. VOLATILES FREE OF HEADSPACE?				
8. TRIP BLANK PRESENT IN THIS COOLER		Y	, a	
9. PROPER SAMPLE CONTAINERS AND VOLUME?	Image: Control of the control of the		ū	
10. SAMPLES WITHIN HOLD TIME UPON RECEIPT?	U			<u> </u>
11. SAMPLES PROPERLY PRESERVED ⁽¹⁾ ?	I			·
12. CORRECTIVE ACTION REPORT FILED?		Ø	N/A	· · · · · · · · · · · · · · · · · · ·
13. ANALYTICAL PROGRAMS (CIRCLE ONE) COMM	IERCIAL	CLP HA	ZWRAP NFESC ACOE	AFCEE OTHER (STATE OF ORIGIN):
LOG - IN NOTES ⁽¹⁾ :				
		`)	

Use this spate of the check if requ.

additional sheets if necessary) to document samples that are received broken if samples required pH adjustment, record volume and type of preservative added.

KATAHO ANALYTICAL SERVICES, I				()	LAB (WORK ORDER) # WP 3395
SAMPLE RECEIPT CONDITION REPOF Tel. (207) 874-2400 Fax (207) 775-4029	ŖΤ				PAGE: 3 OF 4
rax (201) 110-1029		٠.			COOLER: 3 OF 4
CLIENT: Tetra Tech		-	••		SDG#
PROJECT: CNC		· .			DELIVERED BY: RECEIVED BY: LIMS ENTRY BY: So
•	•				LIMS REVIEW BY / PM:
	YES	NO	EXCEPTIONS		COMMENTS RESOLUTION
2. CHAIN OF CUSTODY PRESENT IN THIS COOLER?	g				
3. CHAIN OF CUSTODY SIGNED BY CLIENT?	I				
4. CHAIN OF CUSTODY MATCHES SAMPLES?	9				
5. TEMPERATURE BLANKS PRESENT?	4				TEMP BLANK TEMP (°C)= 3.0
6. SAMPLES RECEIVED AT 4°C +/- 2? (ICE) ICE PACKS PRESENT (Y) or N?	1				COOLER TEMP (*C)≃ NA (RECORD COOLER TEMP ONLY IF TEMP BLANK IS NOT PRESENT)
7. VOLATILES FREE OF HEADSPACE?	P				
8. TRIP BLANK PRESENT IN THIS COOLER			, u		
9. PROPER SAMPLE CONTAINERS AND VOLUME?					
10. SAMPLES WITHIN HOLD TIME UPON RECEIPT?					
11. SAMPLES PROPERLY PRESERVED(1)?	P			٠.	
12. CORRECTIVE ACTION REPORT FILED?		\square	N/A	' .	· <u></u>
13. ANALYTICAL PROGRAMS (CIRCLE ONE) COMMER	RCIAL	CLP HA	ZWRAP NFESC	ACOE	AFCEE OTHER (STATE OF ORIGIN):
LOG - IN NOTES ⁽¹⁾ :					
			•		
			`		

Use this space (and additional sheets if necessary) to document samples that are received broken or compromised, C-O-C discrepancies, radiation checks, residual chlorine check, results of pH check if required. If samples required pH adjustment, record volume and type of preservative added.

KATAHDIN ANALYTICAL SERVICES,				LAB (WORK ORDER) #	
SAMPLE RECEIPT CONDITION REPO Tel. (207) 874-2400 Fax (207) 775-4029	ŖT			PAGE: 4 OF 4	
1 42 (201) 110-1020		٠.		COOLER: 4 OF 4	
CLIENT: Tetra Tech	·	— -		COC#SDG#DATE / TIME RECEIVED: 7.27.99	
PROJECT: CNC	•	-		DELIVERED BY: RECEIVED BY: LIMS ENTRY BY: LIMS REVIEW BY / PM:	,
1. CUSTODY SEALS PRESENT / INTACT?	YES	NO	EXCEPTIONS	COMMENTS RESOLUTION	
2. CHAIN OF GUSTODY PRESENT IN THIS COOLER?		9			
3. CHAIN OF CUSTODY SIGNED BY CLIENT?	<u> </u>	ū	ō		
4. CHAIN OF CUSTODY MATCHES SAMPLES?					
5. TEMPERATURE BLANKS PRESENT?	1			TEMP BLANK TEMP (°C)= 2.7	
6. SAMPLES RECEIVED AT 4°C +/- 27 (CE) ICE PACKS PRESENT (Y) or N?	, (1)			COOLER TEMP (*C)= NA (RECORD COOLER TEMP ONLY IF TEMP BLANK IS NOT PRESENT)	
7. VOLATILES FREE OF HEADSPACE?					
8. TRIP BLANK PRESENT IN THIS COOLER		U	, u		
9. PROPER SAMPLE CONTAINERS AND VOLUME?					
10. SAMPLES WITHIN HOLD TIME UPON RECEIPT?					
11. SAMPLES PROPERLY PRESERVED ⁽¹⁾ ?					
12. CORRECTIVE ACTION REPORT FILED?			N/A	· '· <u>· · · · · · · · · · · · · · · · · </u>	
13. ANALYTICAL PROGRAMS (CIRCLE ONE) COMME	RCIAL	CLP HAZ	ZWRAP (NFESC)	COE AFCEE OTHER (STATE OF ORIGIN):	
LOG - IN NOTES ⁽¹⁾ :					
		`,	1		

Katahdin 340 County Road No. 5 P.O. Box 720 Westbrook, ME 04098 Tel: (207) 874-2400 Fax: (207) 775-4029

CHAIN of CUSTODY

PLEASE PRINT IN PEN Page Contact Fax # NUS Inc -(843)554-4925 (Zip Code 29495 N. Charleston City Purchase Order # Proj. Name / No. Katahdin Quote # Bill (if different than above) Address Sampler (Print / Sign) James R Copies To: Jeff Alexander IS AND CONTAINER TYP PRESERVATIVES WORK ORDER #: LAB USE ONLY KATAHDIN PROJECT MANAGER REMARKS: SHIPPING INFO: FED EX ☐ UPS CLIENT AIRBILL NO: TEMP BLANK □ INTACT ☐ NOT INTACT TEMP°C Date / Time No. of Matrix Sample Description coll'd Critrs. 1/24/94/0730 Ŧ IZTLØØ8Ø1 GW 3 12GLM&48 /1005 ょ 12GLMØ4ØID 2 //∞5 3 LAGLIM 950 3 2 //w*s* TAGLMØ701 1014 5 3 ス 12GLMØ7Ø1 1223 2 11521 13GLMØRØ1 2 13GLMØZØID 1521 ユ 13GLMQ40 ح 2 /1510 1/25/91/1205 126LMØ19 9 2 12GLMØ291 11210 a " X, / 3 a 12G-LMB60 9 3 /ars al 1/05 /1/25 2 1125 2966 M&481 29GLM&58 130 MENTS RLOOID! Received By: (Signature) Date / Time Received By: (Signature) ished By: (Signature) Relinquished By: (Signature) Date / Time 713402904554 7-2799 0850 Date / Time Received By: (Signature) Relinquished By: (Signature) Received By: (Signature) Relinquished By: (Signature) Date / Time

New England-ME Laboratory (207) 874-2400 CONFIRMATION

Page 1

ORDER NO WP-3395 Project Manager: Andrea J. Colby

ORDER DATE: 07/27/99

REPORT TO: Paul Calligan PHONE: 850/385-98

Tetra Tech NUS FAX: 850/385-9860 1401 Oven Park Dr., Suite 102 DUE: 26 AUG

Tallahassee, FL 32308 FAC.ID: CNC CHARLESTON

INVOICE: ACCOUNTS PAYABLE PHONE: 412/921-7090

TETRA TECH NUS, INC. PO: N7912-P99264

FOSTER PLAZA 7, 661 ANDERSEN DR.

PITTSBURGH, PA 15220 PROJECT: CTO #68

SAMPLED BY: J. HILL, J. ALEXANDER DELIVERED BY: FEDEX DISPOSE: AFTER 26 AUG

ITEM LOG NUMBER SAMPLE DESCRIPTION SAMPLED DATE/TIME RECEIVED MATRIX
1 WP3395-1 12TL00801 24 JUL 0730 27 JUL AQ

DETERMINATION METHOD QTY PRICE AMOUNT Volatile Organics by 8260B SW8260 1 75.00 75.00

	LOG NUMBER	SAMPLE DESCRIPTION	SAMPLED DATE/TIME	RECEIVED	MATRIX
2	WP3395-2	12GLM0401	24 JUL 1005	27 JUL	AQ
	WP3395-3	12GLM0401D	24 JUL 1005		
	WP3395-4	12GLM0501	24 JUL 1008		
	WP3395-5	12GLM0301	24 JUL 1014		
	WP3395-6	12GLM0701	24 JUL 1223		
	WP3395-7	13GLM0201	24 JUL 1521		
	WP3395-8	13GLM0201D	24 JUL 1521		
	WP3395-9	13GLM0401	24 JUL 1510		
	WP3395-10	29GLM0201	26 JUL 1105		
	WP3395-11	29GLM0401	26 JUL 1125		
	WP3395-12	29GLM0401D	26 JUL 1125		
	WP3395-13	29GLM0501	26 JUL 1130		
	WP3395-14	ZBRL00101	26 JUL 1 450		

<u>DETERMINATION</u>	METHOD	OTY	PRICE	AMOUNT	
Volatile Organics by 8260B	SW8260	13	75.00	975.00	
Polynuclear Aromatic Hydrocarbons	EPA 8270	13	125.00	1625.00	
TOTALS		13	200.00	2600.00	-

KATAHDIN ANALYTICAL SERVICES, INCORPORATED New England-ME Laboratory (207) 874-2400 CONFIRMATION

Page 2

ORDER NO WP-3395

Project Manager: Andrea J. Colby

ORDER DATE: 07/27/99

RT TO: Paul Calligan R.F

PHONE: 850/385-9899

Tetra Tech NUS

FAX: 850/385-9860

1401 Oven Park Dr., Suite 102

DUE: 26 AUG

Tallahassee, FL 32308

FAC. ID: CNC CHARLESTON

ACCOUNTS PAYABLE INVOICE:

PHONE: 412/921-7090

TETRA TECH NUS, INC.

PO: N7912-P99264

FOSTER PLAZA 7, 661 ANDERSEN DR.

PITTSBURGH, PA 15220

PROJECT: CTO #68

SAMPLED BY: J. HILL, J. ALEXANDER DELIVERED BY: FEDEX DISPOSE: AFTER 26 AUG

	LOG NUMBER	SAMPLE DESCRIPTION	SAMPLED DATE/TIME	RECEIVED	MATRIX
3	WP3395-15	12GLM0101	25 JUL 1205	27 JUL	AQ
	WP3395-16	12GLM0201	25 JUL 1210		
	WP3395-17	12GLM0601	25 JUL 1215		

<u>DETERMINATION</u>	METHOD	OTY	_ PRICE	AMOUNT	
Volatile Organics by 8260B	SW8260	3	75.00	225.00	
Polynuclear Aromatic Hydrocarbons	EPA 8270	3	125.00	375.00	
Nitrogen, Nitrate (as N)	E300	3	30.00	90.00	
Sulfate (as SO4)	E300	3	0.00	0.00	
GC Subcontract		3	95.00	285.00	
					_
TOTALS		3	325.00	975.00	

ORDER NOTE: QC-IV NFESC

DD(KAS007QC-DB3)

CNC CHARLESTON

REPORT COPY: MS. LEE LECK

TETRA TECH NUS FOSTER PLAZA 7 661 ANDERSEN DR. PITTSBURGH, PA 15220

REPORT & DISK

INTRICE: With Report

TOTAL ORDER AMOUNT \$3,650.00 This is NOT an Invoice

AJC/BKR

07-27Please contact KATAHDIN ANALYTICAL SERVICES promptly if you have any questi

Client: Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP3395-10

SDG:

WP3395

Report Date:

8/26/99

PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

N/A

Method:

EPA 8270

Date Analyzed:

8/6/99

Sample Description	Matrix	Sampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
29GLM0201	AQ	7/26/99	7/27/99	7/26/99	D\$	EPA 3510	KRT
Compound	Resi	ult Units	DF	Sample PQL	Method PQL		
NAPHTHALENE	<10) ug/L	1.0	10	10		
2-METHYLNAPHTHALENE	<10	O ug/L	1.0	10	10		
ACENAPHTHYLENE	<10) ug/L	1.0	10	10		
ACENAPHTHENE	<10) ug/L	1.0	10	10		
FLUORENE	<10	ug/L	1.0	10	10		
PHENANTHRENE	<10	ug/L	1.0	10	10		
ANTHRACENE	<10	O ug/L	1.0	10	10		
FLUORANTHENE	<10) ug/L	1.0	10	10		
PYRENE	<10	O ug/L	1.0	10	10		
BENZO[A]ANTHRACENE	<10	ug/L	1.0	10	10		
CHRYSENE	<10	O ug/L	1.0	10	10		
BENZO[B]FLUORANTHENE	<10) ug/L	1.0	10	10		
BENZO[K]FLUORANTHENE	<10	D ug/L	1.0	10	10		
BENZO[A]PYRENE	<10	O ug/L	1.0	10	10		
INDENO[1,2,3-CD]PYRENE	<10	ug/L	1,0	10	10		
DIBENZIA,HJANTHRACENE	<10	O ug/L	1.0	10	10		
BENZO[G,H,I]PERYLENE	<10	O ug/L	1.0	10	10		
NITROBENZENE-D5	52	_	1.0				
2-FLUOROBIPHENYL	54	%	1.0				
TERPHENYL-D14	86	%	1.0				

Report Notes:

Client:

Paul Calligan

Tetra Tech NUS

1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

Report Date:

WP3395-10

SDG:

WP3395 8/26/99

PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

N/A

Method:

SW8260

Date Analyzed: 8/2/99

Sample Description	Matrix	Sam	pled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
29GLM0201	AQ 7/26/9		/26/99	6/99 7/27/99		KMC	5030	KMC
Compound	R	esult	Units	DF	Sample PQL	Method PQL		
BENZEN E		<5	ug/L	1.0	5	5		
TOLUENE		<5	ug/L	1.0	5	5		
1,2-DIBROMOETHANE		<5	ug/L	1.0	5	5		
ETHYLBENZENE		<5	ug/L	1.0	5	5		
NAPHTHALENE		<5	ug/L	1.0	5	5		
MTBE		<5	ug/L	1.0	5	5		
TOTAL XYLENES		<5	ug/L	1.0	5	5		
DIBROMOFLUOROMETHANE		112	%	1.0				
1,2-DICHLOROETHANE-D4		109	%	1.0				
)LUENE-D8		114	%	1.0				
→BROMOFLUOROBENZENE		94	%	1.0				

port Notes:

Client: Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP3395-11

SDG:

WP3395

Report Date:

8/26/99

PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

N/A

Method:

EPA 8270

Date Analyzed: 8/6/99

Sample Description	Matrix 3	Sampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
29GLM0401	AQ	7/26/99	7/27/99	7/28/99	DS	EPA 3510	KRT
Compound	Resu	ilt Units	DF	Sample PQL	Method PQL		
NAPHTHALENE	<10	ug/L	1.0	10	10		
2-METHYLNAPHTHALENE	<10	ug/L	1.0	10	10		
ACENAPHTHYLENE	<10	ug/L	1.0	10	10		
ACENAPHTHENE	<10	ug/L	1.0	10	10		
FLUORENE	<10	ug/L	1.0	10	10		
PHENANTHRENE	<10	ug/L	1.0	10	10		
ANTHRACENE	<10	ug/L	1.0	10	10		
FLUORANTHENE	<10	ug/L	1.0	10	10		
PYRENE	<10	ug/L	1.0	10	10		
BENZO[A]ANTHRACENE	<10	ug/L	1.0	10	10		
CHRYSENE	<10	ug/L	1.0	10	10		
BENZO[B]FLUORANTHENE	<10	ug/L	1.0	10	10		
BENZO[K]FLUORANTHENE	<10	ug/L	1.0	10	10		
BENZOJAJPYRENE	<10	ug/L	1.0	10	10		
INDENO[1,2,3-CD]PYRENE	<10	ug/L	1.0	10	10		
DIBENZ[A,H]ANTHRACENE	<10	ug/L	1.0	10	10		
BENZO[G,H,I]PERYLENE	<10	ug/L	1.0	10	10		
NITROBENZENE-D5	49	%	1.0				
2-FLUOROBIPHENYL	51	%	1.0				
TERPHENYL-D14	78	%	1.0				

Report Notes:

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP3395-11

SDG:

WP3395

Report Date: PO No.:

8/26/99 N7912-P99264

Project:

CTO #68

% Solids:

N/A

Method:

SW8260

Date Analyzed: 8/2/99

Sample Description	Matrix	Samj	oled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
29GLM0401	AQ	AQ 7/26		7/27/99	8/2/99	KMC	5030	KMC
Compound	Re	esuit	Units	DF	Sample PQL	Method PQL		
BENZENE		<5	ug/L	1.0	5	5		_
TOLUENE		<5	ug/L	1.0	5	5		
1,2-DIBROMOETHANE		<5	ug/L	1.0	5	5		
ETHYLBENZENE		<5	ug/L	1.0	5	5		
NAPHTHALENE		<5	ug/L	1.0	5	5		
MTBE		<5	ug/L	1.0	- 5	5		
TOTAL XYLENES		<5	ug/L	1.0	5	5		
DIBROMOFLUOROMETHANE	1	111	%	1.0				
1,2-DICHLOROETHANE-D4	1	113	%	1.0				
OLUENE-D8	1	115	%	1.0				
Ť-BROMOFLUOROBENZENE		95	%	1.0				

....eport Notes:

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP3395-12

SDG:

WP3395

Report Date: PO No.:

8/26/99

Project:

N7912-P99264 CTO #68

% Solids:

N/A

Method:

EPA 8270

Date Analyzed: 8/6/99

Sample Description	Matrix	Sampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
29GLM0401D	AQ	7/26/99	7/27/99	7/28/99	DS	EPA 3510	KRT
Compound	Res	ult Units	DF	Sample PQL	Method PQL		
NAPHTHALENE	<1	0 ug/L	1.0	10	10	-	
2-METHYLNAPHTHALENE	<1	0 ug/L	1.0	10	10		
ACENAPHTHYLENE	<1	0 ug/L	1.0	10	10		
ACENAPHTHENE	<1	0 ug/L	1.0	10	10		
FLUORENE	<1	0 ug/L	1.0	10	10		
PHENANTHRENE	<1	0 ug/L	1.0	10	10		
ANTHRACENE	<1	0 ug/L	1.0	10	10		
FLUORANTHENE	<1	0 ug/L	1.0	10	10		
PYRENE	<1	0 ug/L	1.0	10	10		
BENZO[A]ANTHRACENE	<1	0 ug/L	1.0	10	10		
CHRYSENE	<1	0 ug/L	1.0	10	10		
BENZO[B]FLUORANTHENE	<1	0 ug/L	1.0	10	10		
BENZO[K]FLUORANTHENE	<1	0 ug/L	1.0	10	10		
BENZO[A]PYRENE	<1	0 ug/L	1.0	10	10		
INDENO[1,2,3-CD]PYRENE	<1	0 ug/L	1.0	10	10		
DIBENZĮA,HJANTHRACENE	<1	0 ug/L	1.0	10	10		
BENZO[G,H,I]PERYLENE	<1	0 ug/L	1.0	10	10		
NITROBENZENE-D5	4	7%	1.0				
2-FLUOROBIPHENYL	49	9 %	1.0				
TERPHENYL-D14	70	5%	1.0				

Report Notes:

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP3395-12

SDG:

WP3395

Report Date: PO No.:

8/26/99 N7912-P99264

Project:

CTO #68

% Solids:

N/A

Method:

SW8260

Date Analyzed: 8/2/99

Sample Description	Matrix	Samj	oled Date	Rec'd Date	Ext, Date	Ext'd By	Ext. Method	Analyst
29GLM0401D	AQ 7/26/9		26/99	7/27/99	8/2/99	KMC	5030	KMC
Compound	R	esult	Units	DF	Sample PQL	Method PQL		
BENZENE		<5	ug/L	1.0	5	5		
TOLUENE		<5	ug/L	1.0	5	5		
1,2-DIBROMOETHANE		<5	ug/L	1.0	5	5		
ETHYLBENZENE		<5	ug/L	1.0	5	5		
NAPHTHALENE		<5	ug/L	1.0	5	5		
MTBE		<5	ug/L	1.0	5	5		
TOTAL XYLENES		<5	ug/L	1.0	5	5		
DIBROMOFLUOROMETHANE	1	116	%	1.0				
1,2-DICHLOROETHANE-D4	1	115	%	1.0				
HUENE-D8	1	112	%	1.0				
#-BROMOFLUOROBENZENE		92	%	1.0				

port Notes:

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP3395-13

SDG:

WP3395

Report Date:

8/26/99

PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

N/A

Method:

EPA 8270

Date Analyzed:

8/6/99

Sample Description	Matrix	Samp	oled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
29GLM0501	AQ	7/	26/99	7/27/99	7/28/99	DS	EPA 3510	KRT
Compound	Re	esult	Units	DF	Sample PQL	Method PQL		
NAPHTHALENE	-	:10	ug/L	1.0	10	10		
2-METHYLNAPHTHALENE	•	:10	ug/L	1.0	10	10		
ACENAPHTHYLENE	•	1 0	ug/L	1.0	10	10		
ACENAPHTHENE	•	:10	ug/L	1.0	10	10		
FLUORENE	•	:10	ug/L	1.0	10	10		
PHENANTHRENE	•	:10	ug/L	1.0	10	10		
ANTHRACENE	•	:10	ug/L	1.0	10	10		
FLUORANTHENE	•	10	ug/L	1.0	10	10		
PYRENE	•	<10	ug/L	1.0	10	10		
BENZO[A]ANTHRACENE	•	:10	ug/L	1.0	10	10		
CHRYSENE	•	10	ug/L	1.0	10	10		
BENZO[B]FLUORANTHENE	•	<10	ug/L	1.0	10	10		
BENZO[K]FLUORANTHENE	•	:10	ug/L	1.0	10	10		
BENZO[A]PYRENE	•	:10	ug/L	1.0	10	10		
INDENO[1,2,3-CD]PYRENE	•	1 0	ug/L	1.0	10	10		
DIBENZ[A,H]ANTHRACENE	•	:10	ug/L	1.0	10	10		
BENZO(G,H,I)PERYLENE	•	10	ug/L	1.0	10	10		
NITROBENZENE-D5		44	%	1.0				
2-FLUOROBIPHENYL		48	%	1.0				
TERPHENYL-D14		78	%	1.0				

Report Notes:

∩lient:

Paul Calligan

Tetra Tech NUS 1401 Öven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP3395-13

SDG:

WP3395

Report Date: PO No.:

8/26/99 N7912-P99264

Project:

CTO #68

% Solids:

N/A

Method:

SW8260

Date Analyzed: 7/31/99

Sample Description	Matrix	Sampled D	ate	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
29GLM0501	AQ 7/26/9			7/27/99	7/31/99	J s s	5030	JSS
Compound	Re	suit l	Jnits	DF	Sample PQL	Method PQL		
BENZENE	<	:5 ug.	/L	1.0	5	5		
TOLUENE	<	:5 ug.	/L	1.0	5	5		
1,2-DIBROMOETHANE	<	:5 ug.	/L	1.0	5	5		
ETHYLBENZENE	<	:5 ug	/L	1.0	5	5		
NAPHTHALENE	<	<5 ug	/L	1.0	5	5		
MTBE	<	<5 ug	/L	1.0	5	5		
TOTAL XYLENES	<	<5 ug	/L	1.0	5	5		
DIBROMOFLUOROMETHANE	9	8	%	1.0				
1,2-DICHLOROETHANE-D4	10	05	%	1.0				
LUENE-D8	16	03	%	1.0				
ੋਂ-BROMOFLUOROBENZENE	10	01	%	1.0				

့port Notes:

4B SEMIVOLATILE ORGANICS METHOD BLANK SUMMARY

(mm)

EPA SAMPLE NO.

SBLK;072899

Lab Name: Katahdin Analytical Services

SDG No.: WP3395

Lab File ID:

Z1645

Lab Sample ID: SBLK;072899

Instrument ID:

5972-Z

Date Extracted: 7/28/99

GC Column: RTX-624 ID: 0.18

Date Analyzed: 08/05/99

Matrix: (soil/water) WATER

Time Analyzed: 13:28

Level: (low/med) LOW

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, LCS'S, MS AND MSD'S

Client Sample ID	Lab Sample ID	Lab Data File	Date Injected	Time Injected
LCS;072899	LCS;072899	Z1646	8/5/99	2:16:00 PM
LCSD;072899	LCSD;072899	Z1647	8/5/99	3:03:00 PM
12GLM0401	WP3395-2	Z1651	8/5/99	6:09:00 PM
12GLM0401D	WP3395-3	Z1652	8/5/99	6:56:00 PM
12GLM0501	WP3395-4	Z1653	8/5/99	7:43:00 PM
12GLM0301	WP3395-5	Z1656	8/6/99	11:14:00 AM
12GLM0701	WP3395-6	Z1657	8/6/99	12:00:00 PM
13GLM0201	WP3395-7	Z1658	8/6/99	12:45:00 PM
13GLM0201D	WP3395-8	Z1659	8/6/99	1:32:00 PM
29GLM0201	WP3395-10	Z1661	8/6/99	3:04:00 PM
29GLM0401	WP3395-11	Z1662	8/6/99	3:51:00 PM
29GLM0401D	WP3395-12	Z1663	8/6/99	4:38:00 PM
29GLM0501	WP3395-13	Z1664	8/6/99	5:25:00 PM
ZBRL00101	WP3395-14	Z1665	8/6/99	6:13:00 PM
12GLM0101	WP3395-15	Z1666	8/6/99	7:00:00 PM
12GLM0201	WP3395-16	Z1667	8/6/99	7:47:00 PM
12GLM0601	WP3395-17	Z1668	8/6/99	8:35:00 PM
13GLM0401	WP3395-9	Z1676	8/9/99	1:57:00 PM

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

SBLK;072899

SDG:

WP3395

Report Date: PO No.:

8/26/99 N7912-P99264

Project:

CTO #68

% Solids:

N/A

Method:

EPA 8270

Date	Analyzed:	8/5/99
Jac	Allalyzeu.	W3/99

Sample Description	Matrix	Sampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
SBLK;072899	AQ	•	-	7/28/99	DS	EPA 3510	KRT
Compound	Res	sult Units	DF	Sample PQL	Method PQL		
NAPHTHALENE	<1	0 ug/L	1.0	10	10		
2-METHYLNAPHTHALENE	<1	0 ug/L	1.0	10	10		
ACENAPHTHYLENE	<1	0 ug/L	1.0	10	10		
ACENAPHTHENE	<1	0 ug/L	1.0	10	10		
FLUORENE	<1	0 ug/L	1.0	10	10		
PHENANTHRENE	<1	0 ug/L	1.0	10	10		
ANTHRACENE	<1	0 ug/L	1.0	10	10		
FLUORANTHENE	<1	0 ug/L	1.0	10	10		
RYRENE	<1	0 ug/L	1.0	10	10		
NZO[A]ANTHRACENE	<1	0 ug /L	1.0	10	10		
CHRYSENE	<1	0 ug /L	1.0	10	10		
BENZO[B]FLUORANTHENE	<1	0 ug/L	1.0	10	10		
BENZO[K]FLUORANTHENE	<1	0 ug/L	1.0	10	10		
BENZO[A]PYRENE	<1	0 ug/L	1.0	10	10		
INDENO[1,2,3-CD]PYRENE	<10	0 ug/L	1.0	10	10		
DIBENZ[A,H]ANTHRACENE	<10	0 ug/L	1.0	10	10		
BENZO[G,H,I]PERYLENE	<10	0 ug/L	1.0	10	10		
NITROBENZENE-D5	60) %	1.0				
2-FLUOROBIPHENYL	57	7 %	1.0				
TERPHENYL-D14	78	3 %	1.0				

,port Notes:

Katahdin Analytical Services LCS/LCSD Report

Sample	File Name	Date Acquired	Time inj	Analyst	Matrix	Method
LCS;072899	Z1646	8/5/99	14:16	KRT	AQ	8270
LCSD;072899	Z1647	8/5/99	15:03	KRT	AQ	8270

	Spk Amt	LCS Result	LCSD Rest	ılt LCS Rec	LCSD Rec	Rec. Limits	RPD	RPD Limit
Compound Name	ug/L	ug/L	ug/L	(%)	(%)	(%)	(%)	(%)
2-METHYLNAPHTHALENE	50	22.6	33.5	*45	*67	70-130	*39	30
ACENAPHTHENE	50	26.3	35.2	*53	70	70-130	28	30
ACENAPHTHYLENE	50	26.1	35.3	*52	71	70-130	*31	30
ANTHRACENE	50	33.7	40.7	*67	81	70-130	19	30
BENZO[A]ANTHRACENE	50	29.7	36.7	*59	73	70-130	21	30
BENZO[A]PYRENE	50	29.7	35.9	*59	72	70-130	20	30
BENZO[B]FLUORANTHENE	50	27.0	34.3	*54	*69	70-130	24	30
BENZO[G,H,1]PERYLENE	50	28.2	31.5	*56	*63	70-130	12	30
BENZO[K]FLUORANTHENE	50	35.4	42.8	71	86	70-130	19	30
CHRYSENE	50	32.2	37.6	*64	75	70-130	16	30
DIBENZ[A,H]ANTHRACENE	50	26,6	30.0	*53	*60	70-130	12	30
FLUORANTHENE	50	32.0	37.4	*64	75	70-130	16	30
FLUORENE	50	27.3	34.0	+55	*68	70-130	21	30 **
INDENO[1,2,3-CD]PYRENE	50	24.7	25.8	*49	*52	70-130	5.9	30
NAPHTHALENE	50	21.9	33.3	*44	*67	70-130	*41	30
PHENANTHRENE	50	30.6	38.3	*61	77	70-130	23	30
PYRENE	50	31.7	41.2	*63	82	70-130	26	30

4A VOLATILE ORGANICS METHOD BLANK SUMMARY

EPA SAMPLE NO.

VBLKS02A

Lab Name: Katahdin Analytical Services

SDG No.: WP3395

Lab File ID:

S5770

Lab Sample ID: VBLKS02A

Date Analyzed: 08/02/99

Time Analyzed: 9:50

GC Column: RTX-624 ID: 0.18

(mm)

Heated Purge: (Y/N) N

Instrument ID: 5972-S

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, LCS'S, MS AND MSD'S

Client Sample ID	Lab Sample ID	Lab Data File	Date Injected	Time Injected
LCSS02A	LCSS02A	S5769	8/2/99	9:02:00 AM
13GLM0401	WP3395-9	S5771	8/2/99	10:45:00 AM
29GLM0201	WP3395-10	\$5772	8/2/99	11:22:00 AM
29GLM0401	WP3395-11	S5773	8/2/99	12:00:00 PM
29GLM0401D	WP3395-12	S5774	8/2/99	12:37:00 PM

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

VBLKS02A

SDG;

WP3395

Report Date:

8/26/99

PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

N/A

Method:

SW8260

Date Analyzed: 8/2/99

Sample Description	Matrix S	ampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
VBLKS02A	AQ	-		- 8/2/99		5030	КМС
Compound	Resul	t Units	DF	Sample PQL	Method PQL		
BENZENE	<5	ug/L	1.0	5	5		
TOLUENE	<5	ug/L	1.0	5	5		
1,2-DIBROMOETHANE	<5	ug/L	1.0	5	5		
ETHYLBENZENE	<5	ug/L	1.0	5	5		
NAPHTHALENE	<5	ug/L	1.0	5	5		
MTBE	<5	ug/L	1.0	5	5		
TOTAL XYLENES	<5	ug/L	1.0	5	5		
DIBROMOFLUOROMETHANE	104	- %	1.0				
1,2-DICHLOROETHANE-D4	102	%	1.0				
TOLUENE-D8	112	%	1.0				
P-BROMOFLUOROBENZENE	98	%	1.0				

Report Notes:

Katahdin Analytical Services 8260 LCS Recovery Sheet

Lab File: S5769

Sample ID: LCSS02A

Date Run: 8/2/99

Analyst: KMC

Time Injected 9:02:00 AM

Matrix: AQ

Compound Name	Spike Amt (ug/L)	Result (ug/L)	Rec (%)	Limits (%)
1,2-DIBROMOETHANE	50	48.4	97	60-140
BENZENE	50	50.6	101	60-140
ETHYLBENZENE	50	59.4	119	60-140
MTBE	50	52.3	104	60-140
NAPHTHALENE	50	62.6	125	60-140
TOLUENE	50	54.4	109	60-140
TOTAL XYLENES	150	186	124	60-140

4A VOLATILE ORGANICS METHOD BLANK SUMMARY

EPA SAMPLE NO.

Lab Name: Katahdin Analytical Services

SDG No.: WP3395

VBLKU31A

Lab File ID:

U0270

Lab Sample ID: VBLKU31A

Date Analyzed: 07/31/99

Time Analyzed: 9:57

GC Column: RTX-624 ID: 0.18

(mm)

Heated Purge: (Y/N) N

Instrument ID: 5973-U

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, LCS'S, MS AND MSD'S

Client Sample ID	Lab Sample ID	Lab Data File	Date Injected	Time Injected
LCSU31A	LCSU31A	U0269	7/31/99	9:21:00 AM
29GLM0501	WP3395-13	U0279	7/31/99	3:25:00 PM
ZBRL00101	WP3395-14	U0280	7/31/99	4:00:00 PM
12GLM0101	WP3395-15	U0281	7/31/99	4:36:00 PM
12GLM0201	WP3395-16	U0282	7/31/99	5:11:00 PM
12GLM0601	WP3395-17	U0283	7/31/99	5:46:00 PM

Glient:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

VBLKU31A

SDG:

WP3395

Report Date: PO No. : 8/26/99 N7912-P99264

Project:

CTO #68

% Solids;

N/A

Method:

.,.

Date Analyzed: 7/31/99

SW8260

Sample Description	Matrix S	ampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst	
VBLKU31A	PA	-	-	7/31/99	JSS	5030	JSS	
Compound	Resul	t Units	DF	Sample PQL	Method PQL			
BENZENE	< 5	ug/L	1,0	5	5	<u> </u>		
TOLUENE	<5	ug/L	1.0	5	5			
1,2-DIBROMOETHANE	<5	ug/L	1.0	5	5			
ETHYLBENZENE	<5	ug/L	1.0	5	5			
NAPHTHALENE	<5	ug/L	1.0	5	5			
MTBE	<5	ug/L	1.0	5	5			
TOTAL XYLENES	<5	ug/L	1.0	5	5			
DIBROMOFLUOROMETHANE	98	%	1.0					
1.2-DICHLOROETHANE-D4	100	%	1.0					
LUENE-D8	101	%	1.0					
"-BROMOFLUOROBENZENE	99	%	1.0					

-port Notes:

Katahdin Analytical Services 8260 LCS Recovery Sheet

Lab File: U0269

Sample ID: LCSU31A

Date Run: 7/31/99

Analyst: JSS

Time Injected 9:21:00 AM

Matrix: AQ

Compound Name	Spike Amt (ug/L)	Result (ug/L)	Rec (%)	Limits (%)
1,2-DIBROMOETHANE	50	47.1	94	60-140
BENZENE	50	50.1	100	60-140
ETHYLBENZENE	50	50.6	101	60-140
мтве	50	45.5	91	60-140
NAPHTHALENE	50	40.3	80	60-140
FOLUENE	50	48.8	98	60-140
TOTAL XYLENES	150	143	95	60-140

ENSR Air Toxics Specialty Laboratory 42 Nagog Park Acton, MA 01720

DATE: August 26, 1999

TO: Andrea Colby

Katahdin Analytical 340 County Road No. 5

P.O. Box 720

Westbrook, ME 04098

Re: Organic Analyses of Aqueous Samples by Gas Chromatography Flame

Ionization Detection (GC/FID)

PROJECT #: 8601-008-200

LAB ID #: 990123

ANALYTICAL PROCEDURE:

Three (3) aqueous samples were analyzed under the guidelines of EPA SW846 Method 3810.

A Hewlett Packard 5890 series II gas chromatograph (GC) equipped with a Hewlett Packard flame ionization detector (FID) was used for the analysis. A 1.0 mL headspace aliquot of each sample was injected into the column for analysis. The operating conditions of the GC/FID are listed in Table 1. A five point calibration was performed for the target analytes (methane, ethane, and ethylene).

No problems occurred during sample receipt or log-in.

QUALITY CONTROL:

- 1. A laboratory blank was analyzed daily in the same manner as the samples. Target analytes were not detected in the blank.
- 2. A Matrix Spike/MSD was performed on the following sample: WP3417-7

All recoveries were within QC limits.

Date Samples Received by the Laboratory: 7/28/99

Date Analysis Started: 8/4/99

C:\My Documents\katrpt10.doc

SAM	PLE LOG-IN & RE	CEIPT CHEC	CKLIST	
Client/Proj #: Katahd	in WP341=	1 /8601	-008-200)
Proj Mgr. M. Hout	· 	1	Lab Pool#:	99012
Inspected & Logged in by:	A MacDuff	;	Date Time: 7	29/99 10
Sample Matrix	Number of Samples	Analysis Requested	Analyze by (date)	Storage Location
Aqueous	3	mee.	8/25/99	RI
	·		, j	· <u>;</u>
	· · ·			<u>.</u>
-				

Circle the	appro	priate_re	sponse:
------------	-------	-----------	---------

- 1) Shipped Hand delivered
- 2) COC present / not present on receipt
- 3) COC Tape present / not present on shipping container
- 4) Samples broken / intact on receipt
- 5) Samples ambient/chilled on receipt Temp blank = 50 C
- 6) Samples preserved correctly / incorrectly / none recommended
- 7) Received within outside holding time
- 8) COC tapes present / not present on samples
- 9) Discrepancies / NO discrepancies noted between COCs and samples

Additional Comments: 3 Norts per sample
Andrea College

Katahdin Katahdin 340 County Road No. 5 P.O. Box 720 Westbrook, ME 04098

CHAIN of CUSTODY

	207) 874-2400 207) 775-4029				192		PLEASE	PRINT	IN PEN	ı	Pag	je	of
Client KARAHUIN AM	ALYMOAL SEX	THE	Contac		Corp		hone #			Fa:	κ#)		
Address Achie As A	-	City	•			7	tate			Zip Code	•	·	
Purchase Order #		Name / No	D .						Katahdir	Quote	#		
Bill (if different than above)			Ac	idress									
Sampler (Print / Sign)								Copie	s To:				
LAB USE ONLY WORK ORDE		_ *		E:IA	Eile			PRESER				C:lk	E HA
REMARKS: SUB. TO E	ROJECT MANAGER				Filt. OYON	□ŸÖΝ	□Ÿ <u>□</u> N	<u>оү</u> <u>о</u> и	□ŸÖΝ	OYON	O Y O N	□YŪN	ם לים
CHIRDING INICO: A CED EX	O UPS	C CLIEN		ETHERE	:				:	:	:	:	
SHIPPING INFO: AIRBILL NO:		LJ CLIEN			:	:	. :		;	:		:	:
TEMP°C ∑ TEMP BLAN	K 🗆 INTACT	☐ NOT IN	VTACT	THANK GITTA			.		.	:		:	:
* Sample Description	Date / Time coll'd	Matrix	No. of Cntrs.	ME	:		piD	:	:	:	:	:	
WP3417-1	7/27/99/1050	AQ	3	X		190	ßΞ	- (-		
-2	11010		ļ	X			~-	2					
-7	11055	$\sqrt{}$		X			g aut 1	5		· -			ļ
	/ /												,_
	/	_		-:									
	/_												
	/												
	/										ı		
	/					_							
	/												
	//												
	/								_				
	/												
	/										<u> </u>		
	/												
	/							6					
COMMENTS QC-/V N	FESC D	KKK	15 D	77GC	1 - DB	3)	Resu	its]	Du-e	. : 5	?-Z:	5-9	9_
700 194 7-28-	9 1445	ved By: (Si		_ _	Relinquish				ite / Tin		MIK	By: (Sign	
Relinquished By: (Signature) Date / Time Received By: (Signature) Relinquished By: (Signature) Date / Time Received By: (Signature)					leceived I	3y: (Sign:	atúre)′						

ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO. Lab Name: ____ ENSR ____ Contract: ____ WP3417-1(H) Matrix: (soil/water) _____ water _____ Lab Sample ID: 990123-1 Sample wt / vol: ____ 32.5 ml ____ (g/ml) Lab File ID: KTH_028 Level: (low/med) low Date Received: 7/29/99 % Moisture: _____ NA _____ Date Analyzed: 8/4/99 GC Column: Carboxen 1004 OD: 1/16" Dilution Factor:_____1 Soil Extract Volume: ____ NA ____ (µI) Soil Aliquot Volume: ____ NA ___ (µI) **CONCENTRATION UNITS:** CAS NO. COMPOUND (μg/L or PPMv) __ μg/L ___ Q 74-82-8 Methane 5.2 U 74-85-1 Ethene 9.0 U 74-84-0 Ethane U 9.6

Lab Name: ENSR	Contract:		WP3417-2((H)
Lab Code:	Case No.:	_SAS NO.:	SDG NO.:	
Matrix: (soil/water)	_ water	Lab Sample ID:	990123-2	
Sample wt / vol: 32	.5 ml (g/ml)	Lab File ID:	KTH_029	
Level: (low/med)	low	Date Received:_	7/29/99	
% Moisture: NA _		Date Analyzed:_	8/4/99	
GC Column: _ Carboxen	1004 OD: 1/16"	Dilution Factor:_	1	<u></u>
Soil Extract Volume:	NA (lц)	Soil Aliquot Volu	me: NA	_ (µl)
CAS NO.	COMPOUND	CONCENTRATI (µg/L or PPMv)		Q
74-82-8 74-85-1 74-84-0	Methane Ethene Ethane	5.2 9.0 9.6		U U U

Lab Name: ENSR	Contract:	WP3417-7(0	C)
		SAS NO.: SDG NO.:	
Matrix: (soil/water)	_water	Lab Sample ID: 990123-3	
Sample wt / vol: 32.	5 ml (g/ml)	Lab File ID:KTH_030	
Level: (low/med)	_low	Date Received:7/29/99	
% Moisture: NA		Date Analyzed:8/4/99	
GC Column: _ Carboxen	1004 OD: 1/16"	Dilution Factor:1	
Soil Extract Volume:	NA (µl)	Soil Aliquot Volume: NA	_ (µl)
CAS NO.	COMPOUND	CONCENTRATION UNITS: (µg/L or PPMv) µg/L	Q
74-85-1	Methane Ethene Ethane	5.2 9.0 9.6	U U

Lab Name: ENSR	Contract:	VBLK01	
Lab Code:	Case No.:	SAS NO.: SDG NO.:	
Matrix: (soil/water)	_water	Lab Sample ID: MB990123	
Sample wt / vol: 32	.5 ml (g/ml)	Lab File ID:KTH_026	
Level: (low/med)	low	Date Received:NA	
% Moisture: NA		Date Analyzed:8/4/99	
GC Column: _ Carboxen	1004 OD: 1/16"	Dilution Factor: 1	
Soil Extract Volume:	NA (Iµl)	Soil Aliquot Volume; NA (μΙ)
CAS NO.	COMPOUND	CONCENTRATION UNITS: (µg/L or PPMv) µg/L	Q
74-82-8 74-85-1 74-84-0	Methane Ethene Ethane	5.2 9.0 9.6	U U

Lab Name: ENSR	Contract:	L	CS01	
Lab Code:	Case No.:	SAS NO.:	SDG NO.:	
Matrix: (soil/water)	_water	Lab Sample ID: LC	S990123	
Sample wt / vol: 32.	5 ml (g/ml)	Lab File ID:KTI	H_027	_
Level: (low/med)	_low	Date Received:	NA	
% Moisture: NA		Date Analyzed:8	/4/99	_
GC Column: _ Carboxen	1004 OD: 1/16"	Dilution Factor:	1	
Soil Extract Volume:	NA (µl)	Soil Aliquot Volume	:: NA (μl)
CAS NO.	COMPOUND	CONCENTRATION (µg/L or PPMv)		Q
74-82-8 74-85-1 74-84-0	Methane Ethene Ethane	38 66 70		

		EPA SAMPLE NO.
Lab Name: E	NSR Contract:	WP3417-7(A)MS
Lab Code:	Case No.:	SAS NO.: SDG NO.:
Matrix: (soil/water)_	water	Lab Sample ID: 990123-3 MS
Sample wt / vol:	_ 32.5 ml (g/ml)	Lab File ID:KTH_031
Level: (low/med)	low	Date Received:7/29/99
% Moisture: N	NA	Date Analyzed:8/4/99
GC Column: _ Carbo	oxen 1004 OD: 1/16"	Dilution Factor:1
Soil Extract Volume:	NA (μΙ)	Soil Aliquot Volume: NA (µl)
CAS NO.	COMPOUND	CONCENTRATION UNITS: (µg/L or PPMv) µg/L Q
74-82-8	Methane	370
74-85-1	Ethene	620
74.84.0	Ethana	600

EPA SAMPLE NO. WP3417-7(B) MSD Lab Name: _____ ENSR ______ Contract: ____ Matrix: (soil/water) _____ water _____ Lab Sample ID: 990123-3 MSD Sample wt / vol: ____ 32.5 ml ____ (g/ml) Lab File ID: ___KTH_032____ Level: (low/med) _____ low ____ Date Received:___7/29/99 _____ % Moisture: _____ NA _____ Date Analyzed: 8/4/99 _____ GC Column: _ Carboxen 1004 __ OD: ___ 1/16" ___ Dilution Factor: ____1____ Soil Extract Volume: ____ NA ___ (µI) Soil Aliquot Volume: ____ NA ___ (µI) **CONCENTRATION UNITS:** CAS NO. COMPOUND (μg/L or PPMv) __ μg/L ___ Q 74-82-8 Methane 280 74-85-1 Ethene 480 74-84-0 Ethane 530

4 METHOD BLANK SUMMARY

Lab	Name:	ENSR	Co	ontract: _	VBLK01						
Lab	Code:	Ca	se No.:	SAS	NO.:	_ SDG NO.:					
Lab	File ID:K	KTH_026			Lab Sample I	MB990123					
Instr	ument ID:	HPGC#	3		Date Analyzed:	_8/4/99	_				
Matr	ix: (soil/wa	iter) wat	er		Level: (low/me	d) lo	w				
	THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES; MS AND M										
		PA DIE NO	LAB		LA		DATE				
0.4		PLE NO.	SAMPLE I		FILE		ANALYZED				
01	LC		LCS99012		KTH_		08/04/99 08/04/99				
02 03		H17-1(H)	990123-1 990123-2		KTH_ KTH		08/04/99				
03		117-2(H) 117-7(C)	990123-3		KTH_		08/04/99				
05		7-7(A) MS	990123-3 N		KTH_	-	08/04/99				
06		7-7(A) MSD	990123-3 M		KTH_		08/04/99				
07	111 0111	1(0) 11100	000120011			.002	00.01.00				
08							_				
09											
10											
11											
12											
13											
14											
15											
16											
17											
18											
19											
20											
21											
22											
23											
24											
25											
26											
CON	MENTS:										
page	e1 of _	_1'_									

3 LABORATORY CONTROL SPIKE RECOVERY

Lab Name:	ENSR	Contract:		
Lab Code:	Case NO.:	SAS NO.:	SDG NO.:	
Laboratory Contr	ol Sample No: LCS0	1	<u></u>	

COMPOUND	SPIKE	LCS	LCS	QC
	ADDED	CONCENTRATION	%	LIMITS
	(µg/L)	(µg/L)	REC #	REC.
Methane	41.03	38.28	93%	50 - 150
Ethene	71.04	65.55	92%	50 - 150
Ethane	77.69	70.18	90%	50 - 150

^{* -} Values outside of QC limits.

3 MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY

_WP3417-7 _	SAMPLE CENTRATION (µg/L)	MS CONCENTI		SDG NO.:	QC
PIKE DED CON g/L)	SAMPLE CENTRATION	MS CONCENTI			
DED CON g/L)	CENTRATION	CONCENT			
DED CON g/L)	CENTRATION	CONCENT			
DED CON g/L)	CENTRATION	CONCENT			
DED CON g/L)		CONCENT			
	(µg/L)	1		1 70	LIMITS
		(<u>µg</u> /	L)	REC #	REC.
	0	371.8	***	91%	50-150
0.4	0	624.4		88%	50-150
7.0	0	689.1		89%	50-150
<u>.</u>					<u></u>
PIKE	MSD	MSD		[
			%	QC	LIMITS
g/L)	(µg/L)	REC #	_	1 .	
0.3	283.9	69%	27%	50	50-150
0.4	484.5	68%	25%	50	50-150
7.0	530.4	68%	26%	50	50-150
•	g/L) 0.3 0.4	DED CONCENTRATION (μg/L) 0.3 283.9 0.4 484.5	DED CONCENTRATION % REC # 0.3 283.9 69% 0.4 484.5 68%	DED CONCENTRATION (μg/L) % % g/L) (μg/L) REC # RPD # 0.3 283.9 69% 27% 0.4 484.5 68% 25%	DED g/L) CONCENTRATION (μg/L) % REC # RPD QC RPD 0.3 283.9 69% 27% 50 0.4 484.5 68% 25% 50

APPENDIX E

BORING LOG OF MONITORING WELL USED IN AQUIFER CHARACTERIZATION EVALUATION

	EnSafe/Allen & Hoshall Project: Zone C - Naval Base Charleston							shall	Monitoring Well		C047006				
					e Ora	rlesto	n		Coordinates: 23/5/64.71 E, 37724	10.48 N					
	ation:								Surface Elevation: 9.8 feet msl						
	rted a								TOC Elevation: 12.27 feet msl		·				
Cor	npletec	1 at 14	45 an	4-5-8	95				Depth to Groundwater, 7.53 feet TOC Measured: 6-21-95						
Drii	ing Met	hod: 4	4.25' 1	TD (7.5	<u>5'' 00)</u>	HSA H	vith spi	it spoon	Groundwater Elevation: 4.74 fe	et msl					
Drit	ing Cor	npany:	Allian	ce En	vironm	ental			Total Well Depth: 12.1 feet bgs						
Geo	ologist:	Peter	Bayle	y											
OEPTH IN FEET	LITHOLOGIC SAMPLE	ANALYTICAL SAMPLE	SAMPLE NO.	* RECOVERY	PID (cpm)	GPAPHIC LOG	SOIL CLASS	GEOLOGIC DESCRIPTION		ELEV. (fl-ms)	WELL DIAGRAM				
								Surface conditions:	soil and grass		PVC Riser > Structure Struct				
5-			1	37	0		SP		k gray, very fine to fine with of silt, soft, wet at 3.5',	6.8	2" ID Sch. 40 PVC, 0.01 slot screen ———————————————————————————————————				
10-			2	0	0		SP		ange FeOx banding in upper with trace medium, trace silt, wn in upper 5".	-2					
i			2	 76						17					
15-			4	37	0		SP		k brown, very fine to fine, , some granule to pebbly	32	des pua				
20-				_											

APPENDIX F

DOMENICO 10 YEAR AND 20 YEAR SIMULATION SPREADSHEETS AND RAOULT'S LAW

SITE 29, BUILDING NH46 ZONE C, CHARLESTON NAVAL COMPLEX NORTH CHARLESTON, SOUTH CAROLINA

DOMENICO'S DILUTION/ATTENUATION EQUATION FOR GROUNDWATER TRANSPORT

Predicted 10-year Migration of Constituents in Groundwater

Parameter Descriptions:	Unite	Parameter Descriptions:	Units
POE - Point of Exposure		pe = Soll Bulk Density	g/cm³
SSTL = Site-Specific Target Level	mg/L	foc = Fraction Organic Carbon in Soil	g-C/g-soil
SSTL _{eource} - Hydrocarbon Concentration in Plume Source Area protective of RBSLs at FOE	mg/L	$\alpha_{\rm X}$ = Longitudinal Dispersivity = $\chi/10$	m
SSTL _{COMP} = Hydrocarbon Concentration at Compliance Point protective of RBSLs at POE	mg/L	$\alpha_{\rm v}$ = Transverse Dispersivity = $\alpha_{\rm x}/3$	 m
X _{FOE} = x = Distance from Plume Source to POE (along Centerline)	m	$\alpha_z = \text{Vertical Dispersivity} = \alpha_x/20$	m
X _{COMP} = x = Distance from POE to Compliance Point (along Centerline)	m	koc - Organic Carbon Pertition Coefficient	cm³·H₂O/g-C
Y = Source Width (Parpendicular to Flow Direction)	m	ko = Soll-Water Scription Costficient	cm³-H₂O/g-soil
Z = Source Depth (Perpendicular to Flow Direction in Vertical Plane)	m	V - Pore Water Velocity	m/sec
K ₈ = Saturated Hydraulic Conductivity	m/sec	R _C = Constituent Reterdation Factor	
i = Groundwater Gradient	cm/cm	V/R _c = Meximum Transport Rate of Dissolved Constituent = (K _e I)/(8R _c)	m/sec
θ = Porceity in Saturated Zone	cm³/cm³	RBSL - Risk-Based Borsening Level in Water Provided by SCDMEC (1998)	mg/L

Oilution & Attanuation without Biological Decay

Constituent	X _{POE}	X _{POE}	Y	Z	t	Ks	_ 1	θ	Ρ8	α×	αγ	αz	foc	koc	k _D	V	Rc	CPOE/CSOURCE
	ft	m	tri	m	sac	m/sec	m/m	:m ³ /cm	g/cm³	m	m	m	g-C/g-soil	cm³-H ₂ O/g-C	cm³-H₂O/g-soll	m/sec		
2	1.00		21		107 (30, 0.2)	2. Paga 9 3. da	S	10.59°C (5	717.57	J380 Bala 300	E. Soya, 19	3.000			NA MESSAGA DE LA LACITA	3 8898 A 877	S. 1887 1.	T. P. S. S. S. S. S. S. S. S. S. S. S. S. S.
Benzene	430	131.066	1/5	2	3.15E+08	1.43E-05	0.0555	0.47	1.45	13.11	4.37	0.66	6.78E-03	81	0.54918	1.69E-06	2.694	1.752E-02
Toluene	127.15	38.7558	1:5	2	3.15E+08	1.43E-05	0.0555	0.47	1.45	3.88	1.29	0.19	6,78E-03	133	0.90174	1.69E-06	3.782	2.152E-01
Naphthalene	186	50.5974	15_	2	3.15E+08	1.43E-05	0.0555	0.47	1.45	5,06	1.69	0.215	6.78E-03	1543	10.46164	1.69E-06	33.275	4.432E-04

Source: South Carolina Department of Health and Environmental Control (SCDHEC) 1998. Risk-Based Corrective Action for Petroleum Releases. Bureau of Underground Storage Tenk Management.

DOMENICO DILUTION/ATTENUATION MODEL WITHOUT BIOLOGICAL DECAY

$$\frac{C_X}{C_{SOURCE}} = \frac{1}{2} erfc \left[\frac{\left(x - \frac{vt}{Rc}\right)}{2\sqrt{\alpha_X \frac{vt}{Rc}}} \right] \times erf \left[\frac{Y}{4\sqrt{\alpha_Y x}} \right] \times erf \left[\frac{Z}{2\sqrt{\alpha_Z x}} \right]$$

Constituent	CSOURCE	Cx
	mg/L	mg/L
and resulted your	· 62 %	
Benzene	0.313	0.005
Toluene	4,646	1.000
Naphthalene	23.350	0.010
		_

Prepared By: Kenno Dyn

Reviewed By: Paul & Caffin

SITE 29, BUILDING NH46 ZONE C, CHARLESTON NAVAL COMPLEX NORTH CHARLESTON, SOUTH CAROLINA

DOMENICO'S DILUTION/ATTENUATION EQUATION FOR GROUNDWATER TRANSPORT

Predicted 20-year Migration of Constituents in Groundwater

Parameter Descriptions:	Units	Parameter Descriptions:	Units
POE = Point of Exposure		p. = Soil Bulk Denalty	g/cm ²
SSTL = Site-Specific Target Level	mg/L	foc = Fraction Organic Carbon in Soil	g-C/g-soll
SSTL _{SOURCE} - Hydrocerbon Concentration in Pluma Source Area protective of RBSLs at POE	mg/L	α_x = Longitudinal Dispersivity = $x/10$	m
SSTL _{COMP} - Hydrocarbon Concentration at Compilance Point protective of RBSLs at POE	mg/L	α_{y} = Transverse Dispersivity = $\alpha_{x}/3$	m
X _{POE} = x = Distance from Plume Source to POE (along Centerline)	m	$\alpha_z = Vertical Dispersivity = \alpha_z/20$	m
X _{COMP} = x = Distance from POE to Compliance Point (along Centerline)	m	k _{oc} = Organic Carbon Partition Coafficient	cm³-H ₂ Q/g-C
Y = Source Width (Perpendicular to Flow Direction)	m	ko = Soll-Water Sorption Coefficient	cm³-H₂O/g-sall
Z = Source Depth (Perpendicular to Flow Direction in Vertical Plane)	m	V - Pore Weter Velocity	m/sec
Ks = Saturated Hydraulic Conductivity	m/sec	Re - Constituent Retardation Fector	••••
i = Groundwater Gradient	cm/cm	V/R _c = Maximum Transport Rete of Dissolved Constituent = (K,i)/(8R _c)	m/sac
θ = Porosity in Saturated Zona	cm³/cm³	RBSL - Risk-Besed Screening Level in Weter Provided by SCDHEC (1998)	mg/L

Dilution & Attenuation without Biological Decay

Constituent	X _{POE}	X _{POE}	Υ	Z	t	Ks	ı	θ	Рв	αx	αy	αz	foc	k _{oc}	k _o		R _C	C _{POE} /C _{SOURCE}
	ft	m	m	m	30C	m/sec	m/m	:m³/cm	g/cm³	m	m	m	g-C/g-soil	cm³-H ₂ O/g-C	cm ³ -H ₂ O/g-soil	m/sec		
2000	11000					£ 172	11,122.	7. 3.	20,755	20 1 10	8.42		-17 / 30/66/10	100 1 901 1 100 1 11	1. 91 2.07 / 67 000 /		110000	
Benzene	472	143.867	15	2	6.31E+08	1.43E-05	0.0555	0.47	1.45	14.39	4.80	0.72	6.78E-03	81	0.54918	1.69E-06	2.694	1.753E-02
Toluene	127.2	38.771	15	2	6.31E+08	1.43E-05	0.0555	0.47	1.45	3.88	1.29	0.19	6.78E-03	133	0.90174	1.69E-06	3.782	2.153E-01
Naphthalene	288	87.7835	15	2	6.31E+08	1.43E-05	0.0555	0.47	1.45	8.78	2.93	0.44	6.78E-03	1543	10.48154	1.69E-08	33.275	4.400E-04

Source: South Caroline Department of Health and Environmental Control (SCDHEC) 1998. Risk-Based Corrective Action for Petroleum Releases, Bureau of Underground Storage Tank Management.

DOMENICO DILUTION/ATTENUATION MODEL WITHOUT BIOLOGICAL DECAY

$$\frac{C_X}{C_{SOURCE}} = \frac{1}{2} erfc \left[\frac{x - \frac{vt}{Rc}}{2\sqrt{\alpha_X \frac{vt}{Rc}}} \right] \times erf \left[\frac{Y}{4\sqrt{\alpha_Y x}} \right] \times erf \left[\frac{Z}{2\sqrt{\alpha_Z x}} \right]$$
Prepared By:

Constituent	CSOURCE	Cx
	mg/L	mg/L
1000 0.000,000 1, 04 o 14		
Benzene	0.313	0.005
Toluene	4.646	1.000
Naphthalene	23.346	0.010

Reviewed By: Paul E. Collins

SITE 29, BUILDING NH46 **ZONE C, CHARLESTON NAVAL COMPLEX** NORTH CHARLESTON, SOUTH CAROLINA

HYDROCARBON CONSTITUENT CONCENTRATIONS IN WATER BASED ON RAOULT'S LAW

Parameter Descriptions:	Units
C _w = Aqueous Solubility of Organic Constituents Dissolved from Product	mg/L
C _F = Concentration of the Constituent in the Fuel Oil	mg/L
K _{FW} = Fuel/Water Partition Coefficient	
P _F = Density of Fuel Oil	g/mL
MW _F = Molecular Weight of Fuel Oil	g/mol
C _{SAT} = Aqueous Solubility of the Pure Phase Constituent	mol/L
MW _C = Molecular Weight of the Constituent	g/mol
$K_{FW} = \{10^3 (mL/L) p_F \} / (MW_F + C_{SAT} / (1000 + MW_c))$	
$C_W = C_E/K_{EW}$	mg/L

Source: "Solubility, Sorption, and Transport of Hydrophobic Organic Chemicals in Complex Mixtures," EPA Environmental Research Brief, EPA/600/M-91/009, Robert S.

Kerr Environmental Research Laboratory, ADA, Oklahoma.

Source: "CONCAWE 1996 Diesel Fuel/Kerosene" Conoco, Inc., Houston Texas

Key Assumptions:

MW_F: Molecular Weight of Kerosene, Source: "CONCAWE 1996

170 g/mol

Diesel Fuel/Kerosene* Conoco Inc., Houston Texas.

Pr : Density of the Product, Source: Conoco Material Safety Data Sheet for

Diesel fuel/ Kerosene

0.88 g/mL

Concentration of Chemical Constituents in Water Based on Molar Solubility

Constituent	MW _F	C _{SAT}	MWc	P _F	K _{FW}	C _F	C _W
	g/mol	mg/L	g/mol	g/mL		mg/L	mg/L
		w .v.					
Benzene	170.00	1,750	78	0.88	230.72	72.16	0.31
Toluene	170.00	535	92	0.88	890.16	4,136.00	4.65
Ethylbenzene	170.00	152	106	0.88	3609.91	378.40	0.10
Xylene	170.00	198	106	0.88	2771.24	2,200.00	0.79
Napthalene	170.00	40	128,16	0.88	16585.41	387,200.00	23.35

Prepared By:

APPENDIX G

SITE-SPECIFIC RBSL CALCULATIONS

Construction Worker Dermal RBSLs

	Kow	MW	Кр	В	τ _{event}	С	b	t*	t _{event}	DAevent
			cm/hr	unitless	hr/event			hr	hr/event	
Benzene	199.5262315	78.1	0.11551543	0.392637855	2.87E-01	6.32E-01	6.03E-01	6.90E-01	1	eq 3.3
Toluene	537.0317964	92.1	0.259561335	0.958068292	3.44E-01	1.13E+00	1.31E+00	1.33E+00	1	eq 3.2
Ethylbenzene	1412.537545	106.2	0.569219802	2.256154884	4.13E-01	2.36E+00	4.39E+00	1.70E+00	1	eq 3.2
Xylene*	1584.893192	106.2	0.638675123	2.531447415	4.13E-01	2.63E+00	5.31E+00	1.72E+00	1	eq 3.2
Naphthalene	1995.262315	128.2	0.605452393	2.636638957	5.48E-01	2.73E+00	5.69E+00	2.29E+00	1	eq 3.2

	BW	AT	EV	ED	EF	SA	CSF derm	Rfd derm	Target	RBSL	RBSL
	kg	day	events/day	yrs	days/yr	cm ²	(mg/kg-day) ⁻¹	mg/kg-day	Risk or HQ	mg/L	mg/L
Benzene	70	25550	1	1	90	4500	2.99E-02	NA	1.00E-06		8.52E-01
Toluene	70	365	1	1	90	4500	NA	1.60E-01	1.0	2.40E+01	
Ethylbenzene	7:0	365	1	1	90	4500	NA	9.70E-02	1.0	6.05E+00	
Xylene*	70	365	1	1	90	4500	NA NA	1.84E+00	1.0	1.02E+02	
Naphthalene	70	365	1	1	90	4500	NA	3 20E-02	1.0	1.63E+00	

^{*} Kow and MW values for xylene, m-

Prepared By:

Reviewed By:

Construction Worker Incidental Ingestion RBSLs

	BW	AT	IR	ED	EF	Target	CSF oral	Rfd oral	RB\$L
	kg	day	L/day	yrs	days/yr	Risk or HQ		_	mg/L
Benzene	70	25550	0.01	1	90	1.00E-06	2.90E-02		6.85E+01
Toluene	70	365	0.01	1	90	1.0	NA _	2.00E-01	5677.778
Ethylbenzene	70	365	0.01	1	90	1.0	NA	1.00E-01	2838.889
Xylene	70	365	0.01	1	90	1.0	NA	2.00E+00	56777.78
Naphthalene	70	365	0.01	1	90	1.0	NA	4.00E-02	1135.556

Prepared By:

Reviewed By:

Construction Worker Inhalation RBSLs

Chemical	TR (carc)	HI (nonc)	BWadult	AT	Sfi (carc)	RfD (nonc)	IR air	EF	ED	RBSLair	Н	RBSLwater
			kg	yr	[mg/kg-day] ⁻¹	[mg/kg-day]	m³/day	day/yr	yr	mg/m ³	cm³/cm³	mg/L
Benzene	1.00E-06	NA	70	70	2.90E-02	ΝA	20	90	1	3.43E-02	2.26E-01	0.152
Toluene	NA	1	70	1	NA	1.10E-01	20	90	1	1.56E+00	3.01E-01	5.187
Ethylbenzene	NA	1	70	1	NA	2.90E-01	20	90	1	4.12E+00	2.80E-01	14.701
Xylenes	NA	1	70	1	NA	2	20	90	1	2.84E+01	2.78E-01	102.118
Naphthalene	NA	1	70	1	NA	3.71E-04	20	90	1	5.27E-03	2.00E-03	2.633

Prepared By:

Reviewed By:

Minimum Construction Worker RBSLs

	Dermal	Incidental Ingestion	Inhalation	Minimurn
	RBSL	RBSL	RBSL	RB\$L
	mg/L	mg/L	mg/L	mg/L
Benzene	0.85	68.52	0.15	0.15
Toluene	23.98	5677.78	5.19	5.19
Ethylbenzene	6.05	2838.89	14.70	6.05
Xylene	102.33	56777.78	102.12	102.12
Naphthalene	1.63	1135.56	2.63	1.63

Prepared By:

Reviewed By

APPENDIX H

SOIL LEACHABILITY MODEL

S29 Leachability.xls DATA ENTRY

IN-SITU SOIL RISK EVALUATION

Site Data					-
SITE ID#	0" 00 5 "!" N	 -	Charleston		
FACILITY NAME STREET ADDRESS	Site 29, Building N		Charleston C		
STREET ADDRESS	Charleston Naval (complex, North	Charleston, S		
Soil Risk Evalua	tion Data				
TPH		0450	malka		Figure
Soil % SAND (Estima	ated)	9150 97.8			
Soil % CLAY (Estima	•	<u> </u>			
Worst Case	Benzene		mg/kg	Cs	
Soil Analyses	Toluene		mg/kg	Cs	
	Ethylbenzene	3.5	mg/kg	Cs	
	Xylenes		mg/kg	Cs	
	Naphthalene	50.3	mg/kg	Cs	
	MTBE		mg/kg 	Cs	
Natural Organic Cart			mg/kg	foc	
Average Annual Rec Distance from highes	-	25	cm	Hw	
Impact to water table		50	cm	ι	
Bulk Density of Soil		1.45		Ed	. 4
Wetting Front Suction	n	10	=	Hf	2
Soil Hydraulic Condu		1.43E-03		Kf	3
Porosity			decimal %	Φ	4
Residual Water Cont	ent	0.04	decimal %	Wr	5
•	exposure pathways fror ndwater - utility trench	n surface soil.			
Dald indicates aire				_	
Bold indicates site	e specific data				

IN-SITU SOIL RISK EVALUATION

SOIL LEACHABILITY MODEL FOR BENZENE RISK-BASED CORRECTIVE ACTION FOR PETROLEUM RELEASES

SITE INFORMATION:

Site: State of State

REFERENCES:

- (1) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Figure 1.
- (2) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Table 2.
- (3) SCDHEC, RBCA For Petroleum Releeses, June 1995, Appendix B, Input Perameters.
- (4) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Table 1.
- (5) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Figure 2.
- (6) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Figure 3.
- (7) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Figure 4.
- (8) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Figure 5.

INPUT:

COC	Chemical of Concern		BENZENE
Bd	Soil Bulk Density (1)	g/cm3	1.45
Crsbl	Risk Based Screening Level	mg/L	0.15
Cs	Concentration of COC in soil	mg/kg	0.6
DAF	Dilution/Attenuation Factor (2)	unitiess	8
foc	Organic Carbon Content in Soil (3)	mg/kg	6780
H.	Henry's Lew Constant (4)	unitless	0.23
Hf	Wetting front suction head (always negative) (5)	cm	-10
Hw	Average Annual Recharge (3)	cm	25.00
Kf	Soil Hydraulic Conductivity (6)	cm/s	1.43E-03
Koc	Soil/Water Partioning Coefficient (2)	ml/g	81
L	Depth between soil sample with greatest COC concentration to groundwater.	CIN	50
Φ	Porosity (7)	unitless	0.47
t1/2	Biodegredation "half life" (2)	days	16
TPH	Total Petroleum Hydrocarbons, EPA Method 3550	mg/kg	9150
Wr	Residual Weter Content (8)	volume fraction	0.04

CALCULATIONS:

Equation Set i - Determine soil pore water concentration resulting from physical partioning (Cw).

Step 1 - Calculate the total organic carbon content (fcs) of the soil.

fcs = (foc + TPH/1.724)*1E-6 = 0.0121 decimal %

Step 2 - Calculate the concentration of COC in soil pore water (Cw) directly in contact with the contaminate soil.

Cw = Cs*((Wr*1g/cc+Bd)/((Bd*Koc*fcs)+Wr+((ø-Wr)*H'))) = 0.5742 mg//

Equation Set II - Determine the velocity of the soil pore water (Vw)

Step 1 - Calculate the air filled porosity (f) in decimal percent.

f = Ø - Wr = 0.43 decimal %

Step 2 - Determine the time for water to percolate through the vadose zone soil (from depth of worst case soil sample to the water table at site).

t = (f/Kf)*(L-((Hw-Hf)*(In((Hw+L-Hf)/(Hw-Hf))))) = 5,697 seconds

Step 3 - Determine the velocity of the weter (Vw) in feet per year.

Vw = (L/30.48cm/ft)/(t/31,500,000sec/year) = 9,071 ft/year

Equation Set III - Determine the organic retardation effect (Vc) of the contaminant.

Step 1 - Calculate the soil/water distribution coefficient (Kd) (ml/g) for uncontaminated soil.

Kd = Koc * foc * 1E-6 = 0.54918 ml/g

Step 2 - Calculate the retardation effect of natural soil organic matter on COC migration.

 $Vc = Vw/(1 + ((Bd^*Kd)/ø)) = 3,367$ ft/year

Equation Set IV - Determine biodegradation rates and provide final COC concentration (Cf) at depth of concern.

Step 1 - Calculate the time (Tc) in days required for the COC to reach groundwater.

Tc = 365 day/yr*((L/30.48cm/ft)/Vc) = 0.18 days

Step 2 - Calculate estimated concentration of COC in the soil pore water (Cp) necessary to protect groundwater.

 $Cp = 10^{(\log (Crsbl) + ((Tc/2,3)^{\circ}(0.693/t1/2)))} = 0.1512 mg/l$

COC concentration in soil pore water (Cp) is greater than concentration necessary to protect groundwater (Cwl, therefore the SSTL must be calculated.

Equation Set V - Calculate the Site Specific Target Level (SSTL) for the COC in soil.

 $= Cp*DAF*(((Bd*Koc*fcs) + Wr + (F*'H'''))/(Wr*1g/cc+Bd)) = \underbrace{ 1.263531 \text{ mg/kg}}$ Csstl for BENZENE in soil

CHECKED BY: Jan E. Col

Date

Date

	IN-SITU	SOIL RISK	. EVAL	UATION				
	Department of H	SOUTH CAF		al Control ([DHEC)			
Site Data		<u> </u>					_	
SITE ID# FACILITY NAME	0 Site 29, Building NH 46)		·		_		
Instructions	·-							
Provide results, se	parately, for each consti	tuent in the wo	rst case	soil analys	is.			
Data								
List Constituent:	BENZENE		-					
(BTEX, Napth.)								Table
Bioremediation "ha	lf-life"	16		days	t 1/2			1
Soil/water partition	ing coefficient	81		ml/g	Кос			1
Results								
						Equation	Step	
Total Organic Carb	on Content		0.0121	decimal %	f cs	Set	1	
Leachate Concentr			0.574		Cw	;	2	
Air Filled Porosity				decimal %	f	i	1	
Infiltration Rate Tim	ne .			seconds	t	ii	2	
Velocity of Water		-		ft/year	V w	В	3	
Soil/Water Distribut	tion Coefficient	-	0.5492	ml/g	Κd	111	1	
Contaminant Perco	olation Rate		3,367	ft/year	Vс	ill	2	
Time to Reach Gro	undwater	_	0.18	days	Тс	IV	1	
Concentration read	hing Groundwater		0.1512	mg/l	Ср	IV	2	
Site Specific Targe	t Level		1.2635	mg/kg	C sstl	V		
Conclusions	<u> </u>			_				
Does concentration	of chemical of concern	in soil exceed	SSTL?			NO		
Risk of Human Exp	osure due to contamina	ted soil. YES				_NO Page	2 of 6	S Pages
	IN-SITU	SOIL RISK	EVAL	UATION				

SOIL LEACHABILITY MODEL FOR ETHYLBENZENE RISK-BASED CORRECTIVE ACTION FOR PETROLEUM RELEASES

SITE INFORMATION:

Site: Site 29, Building NH 46

Location: Charleston Naval Complex, North Charleston, SC

REFERENCES:

- (1) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Figure 1.
- (2) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Table 2.
- (3) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Input Parameters.
- (4) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Table 1.
- (5) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Figure 2.
- (6) SCDHEC, RBCA For Petroleum Releeses, June 1995, Appendix B, Figure 3.
- (7) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Figure 4.
- (B) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Figure 5.

INPUT:

COC	Chemical of Concern		ETHYLBENZENE
Bd	Soil Bulk Density (1)	g/cm3_	1.45
Crsbi	Risk Based Screening Level	mg/L	6.05
Cs	Concentration of COC in soil	mg/kg	3.5
DAF	Dilution/Attenuation Factor (2)	unitless	8
foc	Organic Carbon Content in Soil (3)	mg/kg	6780
Η,	Henry's Law Constant (4)	unitless	0.28
Hf	Wetting front suction head (always negative) (5)	cm	-10
Hw	Average Annual Recharge (3)	cm	25
Kf	Soil Hydraulic Conductivity (6)	cm/s	0.0014
Koç	Soil/Water Partioning Coefficient (2)	ml/g	176
L	Depth between soil sample with	cm	50
	greatest COC concentration to groundwater.		
Ø	Porosity (7)	unitless	0.47
t1/2	Biodegradation "half life" (2)	days	10
TPH	Total Petroleum Hydrocarbons, EPA Method 3550	mg/kg	9150
Wr	Residual Water Content (8)	volume fraction	0.04

CAI	. ^ .		A T	\sim	MC.
UA.		UL	M 11		NJ.

Equation Set I - Determine soil pore water concentration resulting from physical partioning (CW).

Step 1 - Calculate the total organic carbon content (fcs) of the soil.

Step 2 - Calculate the concentration of COC in soil pore water (Cw) directly in contact with the contaminate soil.

$$Cw = Cs^{*}((Wr *1g/cc + Bd)/((Bd^{*}Koc^{*}fcs) + Wr + ((e-Wr)^{*}H'))) = 0.0625556$$
 mg/

Equation Set II - Determine the velocity of the soil pore water (Vw)

Step 1 - Calculate the air filled porosity (f) in decimel percent.

Step 2 - Determine the time for weter to percolate through the vedose zone soil (from depth of worst case soil sample to the water table at site).

$$t = (f/Kf)*(L-(Hw-Hf))*(In(Hw + ((L-Hf)/(Hw-Hf)))) = 5,697$$
 seconds

Step 3 - Determine tha velocity of the water (Vw) in feet per year.

$$Vw = (L/30.48cm/ft)/(t/31,500,000sec/year) = 9,071$$
 ft/year

Equation Set III - Determine the organic retardation effect (Vc) of the contaminent.

Step 1 - Calculete the soil/water distribution coefficient (Kd) (ml/g) for unconteminated soil.

$$Kd = Koc^*foc^*1E-6 = 1.19328$$
 ml/g

Step 2 - Calculete the reterdation effect of natural soil organic matter on COC migration.

$$Vc = Vw^*(1 + ((Bd^*Kd)/ø)) = _____ ft/year$$

Equation Set IV - Determine biodegradation rates and provide final COC concentration (Cf) at depth of concern,

Step 1 - Calculate the time (Tc) in days required for the COC to reach groundwater.

 $Tc = 365 \text{ day/yr}^*((L/30.48cm/ft)/Vc) =$ 0.31 days

Step 2 - Calculate estimated concentration of COC in the soil pore water (Cp) necessary to protect groundwater,

 $Cp = 10^{(log (Crsbl) + ((Tc/2.3)*(0.693/t1/2)))} =$

COC concentration in soil pore water (Cp) is greater than Crsbl, therefore the SSTL must be calculated.

Equation Set V - Celculate the Site Specific Target Level (SSTL) for the COC in soil.

Csstl for THYLBENZENE= Cp*DAF*(((Bd*Koc*fcs)+Wr+(F*'H'''))/(Wr*1g/cc+Bd)) = 107.695903 mg/kg

PREPARED BY: Guald Formele

Paul E Coop

Date

Date

IN-SITU SOIL RISK EVALUATION

SOUTH CAROLINA Department of Health and Environmental Control (DHEC)								
Site Data	·		-					
SITE ID # 0 FACILITY NAME Site 29, Building NH 46								
Instructions								
Provide results, separately, for each consti	ituent in the	worst case s	oil analys	is.				
Data								
List Constituent: ETHYLBENZENE (BTEX, Napth.) Bioremediation "half-life" Soil/water partitioning coefficient	10 176	_days _ml/g	t 1/2 K oc			Table 1		
Results				_		<u>'</u>		
				Equation Set	Step			
Total Organic Carbon Content Leachate Concentration	0.0121 6.26E-02	_decimal %	f cs C w) 	1 2			
Air Filled Porosity		decimal %	f	i	1			
Infiltration Rate Time	5,697	seconds	t	II	2			
Velocity of Water	9,071	_ft/year	V w	II	3			
Soil/Water Distribution Coefficient	1.1933		Κd	Ш	1			
Contaminant Percolation Rate		g_ft/year	Vс	Ш	2			
Time to Reach Groundwater		days	Tc	IV	1			
Concentration reaching Groundwater		<u>s</u> mg/l	Ср	IV	2			
Site Specific Target Level	108	_mg/kg	C sstl	V				
Conclusions								
Does concentration of chemical of concern in soil exceed SSTL? Risk of Human Exposure due to contaminated soil.				NO				
Nisk of Human Exposure due to contamina	YES	X		NO				
	_ 123	Χ	_	_110				
IN-SITU SC	IL RISK E	VALUATI	ON					

SOIL LEACHABILITY MODEL FOR NAPHTHALENE RISK-BASED CORRECTIVE ACTION FOR PETROLEUM RELEASES

SITE INFORMATION:

Site: Site 29, Building NH 46

Location: Charleston Naval Complex, North Charleston, SC

REFERENCES:

- (1) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Figure 1.
- (2) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Table 2.
- (3) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Input Paramaters.
- (4) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Table 1.
- (5) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Figure 2.
- (6) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Figure 3.
- (7) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Figura 4.
- (B) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Figura 5.

INPUT:

COC	Chemical of Concern		NAPHTHALENE
₽d	Soil Bulk Density (1)	g/cm3	1.45
Crsbl	Risk Based Screening Level	mg/L	1.63
Cs	Concentration of COC in soil	mg/kg	50.3
DAF	Dilution/Attenuation Factor (2)	unitless	В
foc	Organic Carbon Content in Soil (3)	mg/kg	67B0
H,	Henry's Law Constant (4)	unitless	0.002
Hf	Wetting front suction head (elways negetive) (5)	cm	-10
Hw	Average Annual Recharge (3)	cm	25
Kf	Soil Hydraulic Conductivity (6)	cm/s	0.0014
Koc	Soil/Water Pertioning Coefficient (2)	ml/g	1543
L	Depth between soil semple with	cm	50
	greatest COC concentration to groundweter.		
Ø	Porosity (7)	unitless	0.47
t1/2	Biodegradation "half life" (2)	days	48
TPH	Total Petroleum Hydrocarbons, EPA Method 3550	mg/kg	9150
Wr	Residual Water Content (B)	volume fraction	0.04

CALCULATIONS:

Equation Set I - Determine soil pore water concentration resulting from physical partioning (Cw).

Step 1 - Calculate the total organic carbon content (fcs) of the soil.

Step 2 - Calculate the concentration of COC in soil pore water (Cw) directly in contact with the contaminate soil.

$$Cw = Cs*((Wr*1g/cc+Bd)/((Bd*Koc*fcs)+Wr+((ø-Wr)*H'))) = 0.11$$
 mg/l

Equation Set II - Determine the velocity of the soil pore water (Vw)

Step 1 - Calculate the air filled porosity (f) in decimal percent.

Step 2 - Determine the time for water to percolate through the vadose zone soil (from depth of worst case soil sample to the water table at site).

$$t = (f/Kf)^{*}(L-(Hw-Hf))^{*}(In(Hw+((L-Hf)/(Hw-Hf)))) = 5,697$$
 seconds

Step 3 - Determine the velocity of the water (Vw) in feet per year.

Equation Sat III - Determine the organic retardation effect (Vc) of the contaminant.

Step 1 - Calculate the soil/water distribution coefficient (Kd) (ml/g) for uncontaminated soil.

$$Kd = Koc*foc*1E-6 = 10.46154 ml/g$$

Step 2 - Calculate the reterdation effect of natural soil organic matter on COC migration.

$$Vc = Vw*(1+((Bd*Kd)/ø)) = _____ ft/year$$

Equation Set IV - Determine biodegradation rates and provide final COC concentration (Cf) at depth of concern.

Step 1 - Calculate the time (Tc) in days required for the COC to reach groundwater.

 $Tc = 365 \text{ day/yr}^*((L/30.48cm/ft)/Vc) =$ days

Step 2 - Calculate estimated concentration of COC in the soil pore water (Cp) necessary to protect groundwater.

 $Cp = 10^{(\log (Crsbl) + ((Tc/2.3)^{*}(0.693/t1/2)))} = 1.68$ mg/l

COC concentration In soil pore water (Cp) is greater than Crsbl, therefore the SSTL must be calculated.

Equation Set V - Calculate the Site Specific Target Level (SSTL) for the COC in soil.

Csstl for IAPHTHALENE

 $= Cp^*DAF^*(((Bd^*Koc^*fcs) + Wr + (F^*'H'''))/(Wr^*1g/cc + Bd)) = \underline{\qquad 244.681950 \text{ mg/kg}}$

in soil

CHECKED BY: Paul E. Coff

Dete

Date

S29 Leachability.xts Naphth, Summ, 10/12/99 3:53 PM IN-SITU SOIL RISK EVALUATION

SOUTH CAROLINA Department of Health and Environmental Control (DHEC)									
Site Data									
SITE ID # 0 FACILITY NAME Site 29, Building NH 46									
Instructions	· · · · · · · · · · · · · · · · · · ·								
Provide results, separately, for each const	ituent in the worst case s	oil analys	is.						
Data									
List Constituent: NAPHTHALENE (BTEX, Napth.) Bioremediation "half-life" Soil/water partitioning coefficient	48days 1543ml/g	t 1/2 K oc			Table 1 1				
Results									
Total Organic Carbon Content Leachate Concentration Air Filled Porosity Infiltration Rate Time Velocity of Water Soil/Water Distribution Coefficient Contaminant Percolation Rate Time to Reach Groundwater Concentration reaching Groundwater Site Specific Target Level Conclusions	0.0121 decimal % 0.108 mg/l 0.43 decimal % 5,697 seconds 9,071 ft/year 10.46 ml/g 273 ft/year days 1.68 mg/l mg/kg	f cs C w f t V w K d V c T c C p C sstl	Equation Set I II II II IV V	Step 1 2 1 2 3 1 2 1 2					
Does concentration of chemical of concern in soil exceed SSTL?					-				
Risk of Human Exposure due to contamin	ated soilYES X		_NO						
IN-SITU SC	IN-SITU SOIL RISK EVALUATION								